
Ab initio molecular dynamics: basic concepts, current trends and novel applications

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 R1297

(http://iopscience.iop.org/0953-8984/14/50/202)

Download details:

IP Address: 171.66.16.97

The article was downloaded on 18/05/2010 at 19:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/50
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) R1297–R1355 PII: S0953-8984(02)30651-9

TOPICAL REVIEW

Ab initio molecular dynamics: basic concepts, current
trends and novel applications

Mark E Tuckerman

Department of Chemistry and Courant Institute of Mathematical Sciences, New York University,
NY 10003, USA

Received 25 September 2002, in final form 20 November 2002
Published 6 December 2002
Online at stacks.iop.org/JPhysCM/14/R1297

Abstract
The field of ab initio molecular dynamics (AIMD), in which finite temperature
molecular dynamics (MD) trajectories are generated with forces obtained from
accurate ‘on the fly’ electronic structure calculations, is a rapidly evolving and
growing technology that allows chemical processes in condensed phases to be
studied in an accurate and unbiased way. This article is intended to present the
basics of the AIMD method as well as to provide a broad survey of the state
of the art of the field and showcase some of its capabilities. Beginning with a
derivation of the method from the Born–Oppenheimer approximation, issues
including the density functional representation of electronic structure, basis
sets, calculation of observables and the Car–Parrinello extended Lagrangian
algorithm are discussed. A number of example applications, including liquid
structure and dynamics and aqueous proton transport, are presented in order to
highlight some of the current capabilities of the approach. Finally, advanced
topics such as inclusion of nuclear quantum effects, excited states and scaling
issues are addressed.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Modern theoretical methodology, aided by the advent of high speed computing, has advanced
to a level where the microscopic details of chemical processes in condensed phases can now be
treated on a relatively routine basis. One of the most commonly used theoretical approaches
for such studies is the MD method, in which the classical Newtonian equations of motion for
a system are solved numerically starting from a prespecified initial state and subject to a set of
boundary conditions appropriate to the problem. MD methodology allows both equilibrium
thermodynamic and dynamical properties of a system at finite temperature to be computed,
while simultaneously providing a ‘window’ onto the microscopic motion of individual atoms
in the system. One of the most challenging aspects of an MD calculation is the specification
of the forces. In many applications, these are computed from an empirical model or force
field, in which simple mathematical forms are employed to describe bond, bend and dihedral
angle potentials as well as van der Waals and electrostatic interactions between atoms, and the
model is parametrized by fitting to experimental data or high level ab initio calculations on
small clusters or fragments. This approach has enjoyed tremendous success in the treatment
of systems ranging from simple liquids and solids to polymers and biological systems such as
proteins and nucleic acids.

Despite their success, force fields have a number of serious limitations. First, charges
appear as static parameters in the force field, and therefore electronic polarization effects are
not included. This limitation has long been recognized, and attempts to rectify the problem
have been proposed in the form of so-called polarizable models (see [1] for a review), in
which charges and/or induced dipoles are allowed to fluctuate in response to a changing
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environment. While these models have enjoyed considerable success, they also have a number
of serious limitations, including a lack of transferability and standardization. Second, force
fields generally assume a pre-specified connectivity among the atoms and, therefore, suffer
from an inability to describe chemical bond breaking and forming events. The latter problem
can be treated in an approximate manner using techniques such as the empirical valence
bond method [2] or other semi-empirical approaches. However, such methods are also not
transferable and, therefore, need to be reparametrized for each type of reaction and may end
up biasing the reaction path in undesirable ways.

Because of the limitations of force field based approaches,one of the most important recent
developments in MD, which addresses these problems, is the so-called ab initio molecular
dynamics (AIMD) method [3–11], which combines finite temperature dynamics with forces
obtained from electronic structure calculations performed ‘on the fly’ as the MD simulation
proceeds (see, in particular, the recent excellent review by Marx and Hutter [10] for detailed
discussions). Because the electronic structure is treated explicitly in AIMD calculations,
many-body forces, electronic polarization and bond-breaking and forming events are described
to within the accuracy of the electronic structure representation. Moreover, the AIMD
methodology can be easily extended to incorporate nuclear quantum effects via the Feynman
path integral approach [12, 13], leading to the ab initio path integral (AIPI) technique [14–17].

The AIMD and AIPI methods have been used to study a wide variety of chemically
interesting and important problems in areas such as liquid structure, acid–base chemistry,
industrial and biological catalysis, and materials. Applications include (but are certainly not
limited to) calculations of the structure and dynamics of water [18–30] and other hydrogen-
bonded liquids [31–35], structure and dynamics in acidic [36–41] and basic solutions [42, 43],
proton transport in aqueous [44–48] and other environments [33, 34, 49–52] and in clusters [53–
57], structure, proton order/disorder and dynamical properties of ice [27, 58–66], structure of
liquid silicates and glasses [67–75], mechanisms of Ziegler–Natta industrial catalysis [76–78]
and other surface catalytic processes [65, 79–83] and polymer knotting [84–87], to give just a
sampling of the application areas. More recently, AIMD methods have started to impact the
biological sciences and have been applied in calculations of NMR chemical shifts in drug–
enzyme complexes [88], structure of nucleic acids [89], exploration of the design of possible
biomimetics [90, 91] and structure, dynamics and binding mechanisms in myoglobin [92, 93].
In many of these applications, new physical phenomena have been revealed, which could
not have been uncovered using empirical models, often leading to new interpretations of
experimental data and even suggesting new experiments to perform.

Not unexpectedly, the power and flexibility of the AIMD (and AIPI) methodology come
at the price of a significant increase in computational overhead compared to force field based
approaches. Whereas the latter can currently be applied routinely to systems consisting of
104–106 atoms and access timescales on the order of tens of nanoseconds or longer, AIMD
calculations can currently be applied routinely to systems of just a few tens or hundreds of
atoms and access timescales on the order of tens of picoseconds. Moreover, whereas force
fields can be finely tuned for specific situations, the accuracy of AIMD calculations is limited
by the accuracy of the electronic structure method employed. Currently, the most commonly
used electronic structure theory in AIMD is the Kohn–Sham formulation of density functional
theory (DFT) [94–96], in which the electronic orbitals are expanded in a plane-wave basis
set. This protocol provides a reasonably accurate description of the electronic structure for
many types of chemical environment while maintaining an acceptable computational overhead
and constitutes the original Car–Parrinello (CP) formulation of the method [3]. Clearly, then,
AIMD calculations are limited by the accuracy of currently available density functionals.
However, it is important to note that AIMD is a general approach that can be used with any
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electronic structure method, and a number of examples exist in the literature which employ
more accurate or more empirical electronic structure representations [97, 98] as well as different
basis sets [99–101].

The organization of this article is as follows. In section 2, we shall begin with a
derivation of the AIMD method starting from the Born–Oppenheimer approximation and
arriving at the classical equations of motion on the exact ground electronic surface. We
shall then discuss, in section 3, the use of the DFT representation of the electronic structure
and various approximation schemes. Next, in section 4, we will discuss different basis set
expansions of the electronic orbitals and indicate the advantages and disadvantages of different
choices. Following this, in section 5, the adiabatic dynamics method and its relation to the
CP algorithm [3] for AIMD calculations will be described. In section 6, the calculation of
observable properties will be outlined and specific examples considered. In particular, we
will focus on properties for which having direct access to the electronic structure, a unique
feature of AIMD calculations, is important. These include IR and Raman spectra and NMR
chemical shifts. In sections 7 and 8, we will present a number of applications of the AIMD
methodology, including structure and dynamics of liquids and aqueous solutions, biological
systems and industrial catalysis. Following this, in section 9, the inclusion of nuclear quantum
effects via the Feynman path integral approach will be reviewed, and an AIMD based scheme
for the calculation of path integrals will be detailed. Applications of the AIPI technique to
intramolecular proton transfer and aqueous proton transport will be presented. Finally, in
sections 10 and 11, we will briefly discuss a number of advanced AIMD topics including
methods for incorporation of excited states and linear scaling approaches.

2. The Born–Oppenheimer approximation and ab initio molecular dynamics

We begin our discussion of AIMD by considering a system of N nuclei described by coordinates
R1, . . . ,RN ≡ R, momenta P1, . . . ,PN ≡ P and masses M1, . . . , MN , and Ne electrons
described by coordinates r1, . . . , rNe ≡ r, momenta p1, . . . ,pNe ≡ p and spin variables
s1, . . . , sNe ≡ s. Nuclear spin is ignored in the present discussion. The non-relativistic
Hamiltonian of the system is given by

H =
N∑

I=1

P 2
I

2MI
+

Ne∑
i=1

p2
i

2m
+

∑
i> j

e2

|ri − r j | +
∑
I>J

Z I Z J e2

|RI − RJ | −
∑
i,I

Z I e2

|RI − ri |
≡ TN + Te + Vee(r) + VNN(R) + VeN(r,R) (2.1)

where m is the mass of the electron and Z I e is the charge on the I th nucleus. In the second
line, TN, Te, Vee, VNN and VeN represent the nuclear and electron kinetic energy operators
and electron–electron, nuclear–nuclear and electron–nuclear interaction potential operators,
respectively. In order to solve the complete quantum mechanical problem, we start by seeking
the eigenfunctions and eigenvalues of this Hamiltonian, which will be given by solution of the
time-independent Schrödinger equation

[TN + Te + Vee(r) + VNN(R) + VeN(r,R)]�(x,R) = E�(x,R) (2.2)

where x ≡ (r, s) denotes the full collection of electron position and spin variables, and
�(x,R) is an eigenfunction of H with eigenvalue E . Clearly, an exact solution of
equation (2.2) is not possible and approximations must be made. We first invoke the Born–
Oppenheimer approximation by recognizing that, in a dynamical sense, there is a strong
separation of timescales between the electronic and nuclear motion, since the electrons are
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lighter than the nuclei by three orders of magnitude. In terms of equation (2.2), this can be
exploited by assuming a quasi-separable ansatz of the form

�(x,R) = φ(x,R)χ(R) (2.3)

where χ(R) is a nuclear wavefunction and φ(x,R) is an electronic wavefunction that depends
parametrically on the nuclear positions. We note, at this point, that an alternative derivation
using a fully separable ansatz to the time-dependent Schrödinger equation was presented
by Marx and Hutter in [10]. Substitution of equation (2.3) into (2.2) and recognition
that the nuclear wavefunction χ(R) is more localized than the electronic wavefunction,
i.e. ∇I χ(R) � ∇I φ(x,R), yields

[Te + Vee(r) + VeN(r,R)]φ(x,R)

φ(x,R)
= E − [TN + VNN(R)]χ(R)

χ(R)
. (2.4)

From the above, it is clear that the left-hand side can only be a function of R alone. Let this
function be denoted ε(R). Thus,

[Te + Vee(r) + VeN(r,R)]φ(x,R)

φ(x,R)
= ε(R)

[Te + Vee(r) + VeN(r,R)]φ(x,R) = ε(R)φ(x,R).

(2.5)

Equation (2.5) is an electronic eigenvalue equation for an electronic Hamiltonian, He(R) =
Te + Vee(r) + VeN(r,R), which will yield a set of normalized eigenfunctions φn(x,R) and
eigenvalues εn(R), which depend parametrically on the nuclear positions, R. For each solution,
there will be a nuclear eigenvalue equation:

[TN + VNN(R) + εn(R)]χ(R) = Eχ(R). (2.6)

Moreover, each electronic eigenvalue, εn(R), will give rise to an electronic surface on which
the nuclear dynamics is determined by a time-dependent Schrödinger equation for the time-
dependent nuclear wavefunction X (R, t):

[TN + VNN(R) + εn(R)]X (R, t) = ih̄
∂

∂ t
X (R, t). (2.7)

The physical interpretation of equation (2.7) is that the electrons respond instantaneously to the
nuclear motion; therefore, it is sufficient to obtain a set of instantaneous electronic eigenvalues
and eigenfunctions at each nuclear configuration, R (hence the parametric dependence of
φn(x,R) and εn(R) on R). The eigenvalues, in turn, give a family of (uncoupled) potential
surfaces on which the nuclear wavefunction can evolve. Of course, these surfaces can (and
often do) become coupled by so-called non-adiabatic effects, contained in the terms that have
been neglected in the above derivation.

In many cases, non-adiabatic effects can be neglected, and we may consider motion only
on the ground electronic surface described by

[Te + Vee(r) + VeN(r,R)]φ0(x,R) = ε0(R)φ0(x,R)

[TN + ε0(R) + VNN(R)]X (R, t) = ih̄
∂

∂ t
X (R, t).

(2.8)

Moreover, if nuclear quantum effects can be neglected, then we may arrive at the classical
nuclear evolution by assuming X (R, t) is of the form

X (R, t) = A(R, t)eiS(R,t)/h̄ (2.9)

and neglecting all terms involving h̄, which yields an approximate equation for S(R, t):

HN(∇1S, . . . ,∇N S,R1, . . . ,RN ) +
∂S

∂ t
= 0. (2.10)
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This is just the classical Hamiltonian–Jacobi equation with

HN(P1, . . . ,PN ,R1, . . . ,RN ) =
N∑

I=1

P 2
I

2MI
+ VNN(R) + ε0(R) (2.11)

denoting the classical nuclear Hamiltonian. The Hamilton–Jacobi equation is equivalent to
classical motion on the ground-state surface, E0(R) = ε0(R) + VNN(R), given by

ṘI = PI

MI

ṖI = −∇I E0(R).

(2.12)

Note that the force −∇I E0(R) contains a term from the nuclear–nuclear repulsion and a term
from the derivative of the electronic eigenvalue, ε0(R). Because of the Hellman–Feynman
theorem, the latter can be expressed as

∇I ε0(R) = 〈φ0(R)|∇I He(R)|φ0(R)〉. (2.13)

Equations (2.12) and (2.13) form the theoretical basis of the AIMD approach. The practical
implementation of the AIMD method requires an algorithm for the numerical solution of
equation (2.12) with forces obtained from equation (2.13) at each step of the calculation.
Moreover, since an exact solution for the ground-state electronic wavefunction, |φ0(R)〉, and
eigenvalue, ε0(R), are not available, in general, it is necessary to introduce an approximation
scheme for obtaining these quantities. This is the topic of the next section.

3. Representation of the electronic structure

At this point, a simple form for E0(R) could be introduced, giving rise to a force field based
approach. Such a form would necessarily be specific to a particular system and, therefore,
not be transferable to other situations. If, on the other hand, one derives forces directly
from very accurate electronic structure calculations, the computational overhead associated
with the method will be enormous. It is clear, therefore, that the practical utility of the
AIMD approach relies on a compromise between accuracy and efficiency of the electronic
structure representation based on available computing resources. One approach that has proved
particularly successful in this regard is density functional theory (DFT). DFT is based on
the Hohenberg–Kohn theorem [102], which states that a one-to-one mapping exists between
ground-state electronic densities and external potentials. The ground-state density, n0(r), is
given in terms of the ground-state wavefunction by

n0(r) =
∑

s,s2,...,sNe

∫
dr2 · · · drNe |φ0(r, s, r2, s2, . . . , rNe , sNe )|2. (3.1)

(Here, r and s represent a single position and spin variable, respectively.) A consequence of
the Hohenberg–Kohn theorem is that the exact ground-state energy, ε0(R), can be obtained by
minimizing a certain functional, ε[n], over all electronic densities n(r) that can be associated
with an antisymmetric ground-state wavefunction, |φ0〉, of a Hamiltonian He for some potential
VeN (the so-called v-representability condition) subject to the restriction that

∫
dr n(r) = Ne.

The theorem can also be extended to so-called N-representable densities (obtained from
any antisymmetric wavefunction) via the Levy prescription [95, 96]. The functional ε[n]
is given as a sum, T [n] + W [n] + V [n], where T [n] and W [n] represent the kinetic energy
and Coulomb repulsion energies, respectively, and V [n] = ∫

dr VeN(r)n(r). Although the
functional T [n] + W [n] is universal for all systems of Ne electrons, its form is not known.
Thus, in order that DFT be of practical utility, Kohn and Sham (KS) introduced the idea of a
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non-interacting reference system with a potential VKS(r,R) such that the ground-state energy
and density of the non-interacting system equal those of the true interacting system [94].
Within the KS formulation of DFT, a set of nocc orthonormal single-particle orbitals, ψi (r),
i = 1, . . . , nocc, with occupation numbers fi , where

∑nocc
i=1 fi = Ne, is introduced. These are

known as the KS orbitals. In terms of the KS orbitals, the density is given by

n(r) =
nocc∑
i=1

fi |ψi (r)|2 (3.2)

and the functional takes the form

ε[{ψi }] = − h̄2

2m

nocc∑
i=1

fi 〈ψi |∇2|ψi 〉 +
e2

2

∫
dr dr′ n(r)n(r′)

|r − r′| + εxc[n] +
∫

dr n(r)VeN(r,R)

≡ Tnonint[{ψ}] + J [n] + εxc[n] + V [n]. (3.3)

The first term in the functional represents the quantum kinetic energy, the second is the direct
Coulomb term from Hartree–Fock theory, the third term is the exact exchange–correlation
energy, whose form is unknown, and the fourth term is the interaction of the electron density
with the external potential due to the nuclei. Thus, the KS potential is given by

VKS(r,R) = e2

2

∫
dr′ n(r′)

|r − r′| +
δεxc

δn(r)
+ VeN(r,R) (3.4)

and the Hamiltonian of the non-interacting system is, therefore,

HKS = − h̄2

2m
∇2 + VKS(r,R). (3.5)

The KS orbitals will be the solutions of a set of self-consistent equations known as the Kohn–
Sham equations [95, 96]:

HKSψi (r) = εiψi (r) (3.6)

where εi are the KS energies. Equation (3.7) constitutes a self-consistent problem because the
KS orbitals are needed to compute the density, which is needed to specify the KS Hamiltonian.
However, the latter must be specified in order to determine the orbitals and orbital energies.

The preceding discussion makes clear the fact that DFT is, in principle, an exact theory for
the ground state of a system. However, because the exchange–correlation functional, defined
to be εxc[n] = T [n] − Tnonint[{ψ}] + W [n] − J [n], is unknown, in practice, approximations
must be made. One of the most successful approximations is the so-called local density
approximation (LDA), in which the functional is taken to be the spatial integral over a local
function that depends only on the density:

εxc[n] ≈
∫

dr fLDA(n(r)). (3.7)

The LDA is physically motivated by the notion that the interaction between the electrons and
the nuclei creates only weak inhomogeneities in the electron density. Therefore, the form of
fLDA is obtained by evaluating the exact expressions for the exchange and correlation energies
of a homogeneous electron gas of uniform density n at the inhomogeneous density n(r). The
LDA has been successfully used in numerous applications of importance in solid state physics,
including studies of semiconductors and metals. In many instances of importance in chemistry,
however, the electron density possesses sufficient inhomogeneities that the LDA breaks down.
This is particularly true in hydrogen-bondedsystems, for example. In such cases, the LDA can
be improved by adding an additional dependence on the lowest order gradients of the density:

εxc[n] ≈
∫

dr fGGA(n(r), |∇n(r)|,∇2n(r)) (3.8)
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which is known as the generalized gradient approximation (GGA). Among the most widely
used GGAs are those of Becke [103], Lee and Parr [104], Perdew and Wang [105], Perdew et al
[106] and Cohen and Handy [107–109]. Typically, these can be calibrated to reproduce some
subset of the known properties satisfied by the exact exchange–correlation functional. GGAs
such as these have been used successfully in nearly all of the application areas discussed in
section 1. However, GGAs are also known to underestimate transition state barriers and cannot
adequately treat dispersion. Attempts to incorporate dispersion interactions in an empirical way
have recently been proposed [110]. In order to improve reaction barriers, new approximation
schemes such as Becke’s 1992 functional [111], which incorporates exact exchange, and the
so-called meta-GGA functionals [112–115], which include an additional dependence on the
electron kinetic energy density

τ (r) =
nocc∑
i=1

fi |∇ψi (r)|2 (3.9)

have been proposed with reasonable success. However, the problem of designing accurate
approximate exchange–correlation functionals remains one of the greatest challenges in DFT.

Finally, in order to overcome the limitations of DFT in the context of AIMD, it is, of
course, possible to employ a more accurate electronic structure method, and approaches using
full configuration-interaction representations have been proposed [97]. Typically, these have a
higher computational overhead and, therefore, can only be used to study much smaller systems
such as very small clusters. However, as computing platforms become more powerful and new
algorithms are developed, it is conceivable that other electronic structure methods may be used
more routinely in AIMD studies.

4. Basis set expansions

4.1. Plane-wave basis sets

In MD calculations, the most commonly employed boundary conditions are periodic boundary
conditions, in which the system is replicated infinitely in space. This is clearly a natural choice
for solids and is particularly convenient for liquids. In an infinite periodic system, the KS
orbitals become Bloch functions of the form

ψik(r) = eik·ruik(r) (4.1)

where k is a vector in the first Brillouin zone and uik(r) is a periodic function. A natural basis
set for expanding a periodic function is the Fourier or plane-wave basis set, in which uik(r) is
expanded according to

uik(r) = 1√
	

∑
g

ck
i,geig·r (4.2)

where 	 is the volume of the cell, g = 2πh−1ĝ is a reciprocal lattice vector, h is the cell
matrix, whose columns are the cell vectors (	 = det(h)), ĝ is a vector of integers and {ck

i,g}
are the expansion coefficients. An advantage of plane waves is that the sums needed to go
back and forth between reciprocal space and real space can be performed efficiently using fast
Fourier transforms (FFTs). In general, the properties of a periodic system are only correctly
described if a sufficient number of k-vectors are sampled from the Brioullin zone. However,
for the applications to be considered herein, which are largely concerned with nonmetallic
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systems, it is generally sufficient to consider a single k point, (k = (0, 0, 0)) known as the
�-point, so that the plane wave expansion reduces to

ψi (r) = 1√
	

∑
g

ci,geig·r. (4.3)

At the �-point, the orbitals can always be chosen to be real functions. Therefore, the
plane-wave expansion coefficients satisfy the following property:

c∗
i,g = ci,−g (4.4)

which requires keeping only half of the full set of plane-wave expansion coefficients. In actual
applications, only plane waves up to a given cut-off, h̄2|g|2/2m < Ecut, are kept. Similarly,
the density n(r) given by equation (3.2) can also be expanded in a plane-wave basis:

n(r) = 1

	

∑
g

ngeig·r. (4.5)

However, since n(r) is obtained as a square of the KS orbitals, the cut-off needed for this
expansion is 4Ecut for consistency with the orbital expansion.

Using equations (4.3) and (4.5) and the orthogonality of the plane waves, it is
straightforward to compute the various energy terms. From here on, we will employ atomic
units (h̄ = 1, e = 1 and m = 1). Thus, the kinetic energy can be easily shown to be

εKE = − 1
2

∑
i

∫
dr ψ∗

i (r)∇2ψi (r) = 1
2

∑
i

∑
g

g2|ci
g|2 (4.6)

where g = |g|. Similarly, the Hartree energy becomes

εH = 1

2

∫
dr dr′ n(r)n(r′)

|r − r′| = 1

	

∑
g

′ 4π

g2
|ng|2 (4.7)

where the summation excludes the g = (0, 0, 0) term.
The exchange and correlation energy, εxc[n] in the LDA or GGA, is evaluated on the

real-space FFT grid so that it can be expressed as

εxc[n] = 	

Ngrid

∑
r

fGGA(n(r), |∇n(r)|,∇2n(r)) (4.8)

where Ngrid is the number of real-space grid points. As shown by White and Bird [116], the use
of the grid eliminates the complexity of functional differentiation by allowing the contribution
to the KS potential from εxc be computed from

dεxc

dn(r)
= 	

Ngrid

∂ fGGA

∂n(r)
+

	

Ngrid

∑
r′

[
∂ fGGA

∂|∇n(r′)|
∂|∇n(r′)|

∂n(r)
+

∂ fGGA

∂∇2n(r′)
∂∇2n(r′)

∂n(r)

]
. (4.9)

The gradient and (if needed) the Laplacian of the density can be computed efficiently using
FFTs:

∇n(r) =
∑

g

igeig·r
∑
r′

n(r′)e−ig·r′

∇2n(r) = −
∑

g

g2eig·r
∑
r′

n(r′)e−ig·r′ ; (4.10)

equation (4.10) also shows how the derivatives needed in equation (4.9) can be easily computed
using combinations of forward and inverse FFTs.

The external energy is made somewhat complicated by the fact that, in a plane-wave
basis, very large basis sets are needed to treat the rapid spatial fluctuations of core electrons.
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Therefore, core electrons are often replaced by atomic pseudopotentials [117–119] or treated
via augmented plane-wave techniques [120]. Here, we shall discuss the former. In the
atomic pseudopotential scheme, the nucleus plus the core electrons are treated in a frozen
core type approximation as an ‘ion’ carrying only the valence charge. In order to make this
approximation, the valence orbitals, which, in principle, must be orthogonal to the core orbitals,
must see a different pseudopotential for each angular momentum component in the core, which
means that the pseudopotential must generally be nonlocal. In order to see this, we consider a
potential operator of the form

V̂pseud =
∞∑

l=0

l∑
m=−l

vl(r)|lm〉〈lm| (4.11)

where r is the distance from the ion, and |lm〉〈lm| is a projection operator onto each angular
momentum component. In order to truncate the infinite sum over l in equation (4.11), we
assume that for some l � l̄ , vl(r) = vl̄(r) and add and subtract the function vl̄(r) in
equation (4.11):

V̂pseud =
∞∑

l=0

l∑
m=−l

(vl(r) − vl̄(r))|lm〉〈lm| + vl̄(r)

∞∑
l=0

l∑
m=−l

|lm〉〈lm|

=
∞∑

l=0

l∑
m=−l

(vl(r) − vl̄(r))|lm〉〈lm| + vl̄(r) ≈
l̄−1∑
l=0

l∑
m=−l

�vl(r)|lm〉〈lm| + vl̄(r)

(4.12)

where the second line follows from the fact that the sum of the projection operators is unity,
�vl(r) = vl(r) − vl̄(r) and the sum in the third line is truncated before �vl(r) = 0. The
complete pseudopotential operator will be

V̂pseud(r; R1, . . . ,RN ) =
N∑

I=1

[
vloc(|r − RI |) +

l̄−1∑
l=0

�vl(|r − RI |)|lm〉〈lm|
]

(4.13)

where vloc(r) ≡ vl̄(r) is known as the local part of the pseudopotential (having no projection
operator attached to it). Now, the external energy, being derived from the ground-state
expectation value of a one-body operator, will be given by

εext =
∑

i

fi 〈ψi |V̂pseud|ψi 〉. (4.14)

The first (local) term gives simply a local energy of the form

εloc =
N∑

I=1

∫
dr n(r)vloc(|r − RI |) (4.15)

which can be evaluated in reciprocal space as

εloc = 1

	

N∑
I=1

∑
g

n∗
g ṽloc(g)e−ig·RI (4.16)

where Ṽloc(g) is the Fourier transform of the local potential. Note that at g = (0, 0, 0), only
the nonsingular part of ṽloc(g) contributes. In the evaluation of the local energy, it is often
convenient to add and subtract a long range term of the form Z I erf(αI r)/r , where erf(x) is the
error function, for each ion in order to obtain the nonsingular part explicitly and a residual short
range function v̄loc(|r − RI |) = vloc(|r − RI |) − Z I erf(αI |r − RI |)/|r − RI | for each ionic
core. For the nonlocal contribution, equation (4.3) is substituted into equation (4.13), and an
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expansion of the plane waves in terms of spherical Bessel functions and spherical harmonics
is made. After some algebra, one obtains

εNL =
∑

i

fi

∑
I

∑
g,g′

e−ig·RI c∗
i,gvNL(g, g′)ci,g′ eig′·RI (4.17)

where

vNL(g, g′) = (4π)2
l̄−1∑
l=0

l∑
m=−l

∫
dr r2 jl(gr) jl(g′r)�vl(r)Ylm(θg, φg)Y

∗
lm(θg′, φg′) (4.18)

and θg (θg′) and φg (φg′) are the spherical polar angles associated with the vector g (g′), Ylm

are the spherical harmonics and jl(x) is a spherical Bessel function. Equation (4.18), which is
known as the semi-local form, shows that the evaluation of the nonlocal energy can be quite
computationally expensive. It also shows, however, that the matrix element is almost separable
into g- and g′-dependent terms. A fully separable approximation can be obtained by writing

vNL(g, g′) = (4π)2
l̄−1∑
l=0

l∑
m=−l

∫
dr r2

∫
dr ′ r ′2 jl(gr) jl(g′r ′)�vl(r)

δ(r − r ′)
rr ′

× Ylm(θg, φg)Y
∗
lm(θg′, φg′ ) (4.19)

where a radial δ-function has been introduced. Next, the δ-function is expanded in terms of
a set of radial eigenfunctions (usually taken to be those of the Hamiltonian from which the
pseudopotential is obtained) for each angular momentum channel

δ(r − r ′)
rr ′ =

∞∑
n=0

φ∗
nl(r)φnl(r

′). (4.20)

If this expansion is now substituted into equation (4.19), the result is

vNL(g, g′) = (4π)2
∞∑

n=0

l̄−1∑
l=0

l∑
m=−l

[∫
dr r2 jl(gr)�vl(r)φ∗

nl(r)Ylm(θg, φg)

]

×
[∫

dr ′ r ′2 jl(g′r ′)Y ∗
lm(θg′, φg′ )φnl(r

′)
]

(4.21)

which is now fully separable at the expense of another infinite sum that needs to be truncated.
The sum over n can be truncated after a finite number of terms, although some care is required
in performing the truncation; the so-called Kleinman–Bylander approximation [121] is the
result of truncating it at just a single term. The result of this truncation can be shown to yield
the approximate form

vNL(g, g′) ≈ (4π)2
l̄−1∑
l=0

l∑
m=−l

N−1
lm

[∫
dr r2 jl(gr)�vl(r)φ∗

l (r)Ylm(θg, φg)

]

×
[∫

dr ′ r ′2�vl(r
′) jl(g′r ′)Y ∗

lm(θg′ , φg′)φl(r
′)
]

(4.22)

where

Nlm =
∫

dr r2φ∗
l (r)�vl(r)φl(r) (4.23)

and φl(r) ≡ φ0l(r). Finally, substituting equation (4.22) into (4.17) gives the nonlocal energy
as

εNL =
Ne∑

i=1

N∑
I=1

l̄−1∑
l=0

l∑
m=−l

Z∗
i I lm Zi Ilm (4.24)
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where

Zi Ilm =
∑

g

ci
geig·RI F̃lm(g) (4.25)

and

F̃lm(g) = 4π N−1/2
lm

∫
dr r2 jl(gr)�vl(r)φl(r)Ylm(θg, φg). (4.26)

For certain elements, it has been shown that the simple Kleinman–Bylander form can lead to
spurious or unphysical bound states known as ghost levels. [122] and [123] contain analyses
and techniques for treating spurious ghost states. Alternatively, ghosts can be eliminated by
taking more terms than just the first in equation (4.21) [124] or working directly with the
semilocal form.

The last issue we shall discuss is that of boundary conditions within the plane-wave
description. Plane waves naturally describe fully periodic systems, such as solids, or systems
that can be effectively treated with periodic boundary conditions, such as liquids. What if we
wish to study a system, such as a cluster, surface or wire, in which one or more boundaries
is not periodic? It turns out that such situations can be described rigorously within the plane-
wave formalism. One approach is based on a direct solution to the Poisson equation in a box
containing the cluster [125, 126]. Here, we shall discuss a simpler and more direct approach
developed by Martyna and Tuckerman [127–129], which involves the use of a screening
function in the long range energy terms, i.e. the Hartree and local pseudopotential terms.
The idea is to use the so-called first image form of the average energy in order to form an
approximation to a cluster, wire or surface system, whose error can be controlled by the
dimensions of the simulation cell. Thus, given any density, n(r), and any interaction potential,
φ(r − r′), the average potential energy in this approximation is given by

〈φ〉(1) = 1

2	

∑
g

|ng|2φ̄(−g) (4.27)

where φ̄(g) is a Fourier expansion coefficient of the potential given by

φ̄(g) =




∫ Lc/2

−Lc/2
dz

∫ Lb/2

−Lb/2
dy

∫ La/2

−La/2
dx φ(r)e−ig·r (cluster)

∫ Lc/2

−Lc/2
dz

∫ Lb/2

−Lb/2
dy

∫ ∞

−∞
dx φ(r)e−ig·r (wire)

∫ Lc/2

−Lc/2
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dx φ(r)e−ig·r (surface).

(4.28)

Here, La , Lb and Lc are the dimensions of the simulation cell (assumed to be orthorhombic for
simplicity) in the x , y and z directions (h = diag(La, Lb, Lc)). Note that, unlike equation (4.7),
the g = (0, 0, 0) term is not excluded. In order to obtain an expression that is easily computed
within the plane-wave description, consider two functions φ(long)(r) and φ(short)(r), which are
assumed to be the long and short range contributions to the total potential, i.e.

φ(r) = φ(long)(r) + φ(short)(r)

φ̄(g) = φ̄(long)(g) + φ̄(short)(g).
(4.29)

We require that φ(short)(r) vanish exponentially quickly at large distances from the centre of
the parallelepiped and that φ(long)(r) contain the long range dependence of the full potential,
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φ(r). With these two requirements, it is possible to write

φ̄(short)(g) =
∫

D(	)

dr exp(−ig · r)φ(short)(r)

=
∫

all space
dr exp(−ig · r)φ(short)(r) + ε(g) = φ̃(short)(g) + ε(g) (4.30)

with exponentially small error, ε(g), provided the range of φ(short)(r) is small compared with
the size of the parallelepiped. In order to ensure that equation (4.30) is satisfied, a convergence
parameter, α, is introduced which can be used to adjust the range of φ(short)(r) such that
ε(g) ∼ 0 and the error, ε(g), will be neglected in the following.

The function, φ̃(short)(g), is the Fourier transform of φ(short)(r). Therefore,

φ̄(g) = φ̄(long)(g) + φ̃(short)(g)

= φ̄(long)(g) − φ̃(long)(g) + φ̃(short)(g) + φ̃(long)(g) = φ̂(screen)(g) + φ̃(g) (4.31)

where φ̃(g) = φ̃(short)(g) + φ̃(long)(g) is the Fourier transform of the full potential, φ(r) =
φ(short)(r) + φ(long)(r) and

φ̂(screen)(g) = φ̄(long)(g) − φ̃(long)(g). (4.32)

Thus, equation (4.32) leads to

〈φ〉 = 1

2	

∑
ĝ

|n̄(g)|2[φ̃(−g) + φ̂(screen)(−g)]. (4.33)

The new function appearing in the average potential energy, equation (4.33), is the difference
between the Fourier series and Fourier transform of the long range part of the potential energy
and will be referred to as the screening function because it is constructed to ‘screen’ the
interaction of the system with an infinite array of periodic images.

The specific case of the Coulomb potential,

φ(r) = 1

r
(4.34)

can be separated into short and long range components via

1

r
= erf(αr)

r
+

erfc(αr)

r
(4.35)

where the first term is long range. The screening function for the cluster case is easily
computed by introducing an FFT grid and performing the integration numerically [127]. For
the wire [129] and surface [128] cases, analytical expressions can be worked out and are given
by

φ̄(screen)(g) = −4π

g2

{
cos

(
gc Lc

2

)[
exp

(
− gs Lc

2

)
− 1

2
exp

(
− gs Lc

2

)
erfc

(
α2 Lc − gs

2α

)

− 1

2
exp

(
gs Lc

2

)
erfc

(
α2 Lc + gs

2α

)]

+ exp

(
− g2

4α2

)
Re

[
erfc

(
α2 Lc + igc

2α

)]}
(surface) (4.36)

φ̄(screen)(g) = 4π

g2

[
exp

(
− g2

4α2

)
E(α, Lb, gb)E(α, Lc, gc)

+ cos

(
gb Lb

2

)
4
√

π

αLb
exp

(
− g2

c

4α2

)
I (α, Lb, Lc, gc)
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+ cos

(
gc Lc

2

)
4
√

π

αLc
exp

(
− g2

b

4α2

)
I (α, Lc, Lb, gb)

]
− 4π

g2
e−g2/4α2

(wire) (4.37)

where

I (α, L1, L2, g) =
∫ αL1/2

0
dx xe−g2

a L2
1/16x2

e−x2
E

(
2x

L1
, L2, g

)
(4.38)

and

E(λ, L, g) = erf

(
λ2 L + ig

2λ

)
(4.39)

where g = (ga, gb, gc) and gs =
√

g2
a + g2

b . The one-dimensional integrals in equation (4.38)
are well suited to be performed by Gaussian quadrature techniques. It should be noted
that a simplified expression for the surface screening function can be obtained in the limit
α → ∞ [10, 128, 130]:

φ̄(screen)(g) −→ −4π

g2

[
cos

(
gc Lc

2

)
e−gs/Lc/2

]
. (4.40)

However, as is discussed in [128], some care is needed for gs = 0.
Similarly, for the wire screening function, a simplified expression can be obtained in the

limit α → ∞ [129]:

φ̄(screen) −→ 16

g2

[
cos

(
gb Lb

2

)
J (gc, ga, Lc, Lb)

Lb
+ cos

(
gc Lc

2

)
J (gb, ga, Lb, Lc)

Lc

]
− 4π

g2

(4.41)

where

J (g1, g2, L1, L2) =
∫ L1/2

0
dx eig1 x

√
θ(x, g2, L2)K1

(√
4θ(x, g2, L2)

)
(4.42)

θ(x, g, L) = g2 L2/16

1 + 4x2/L2
(4.43)

and K1(z) is a modified Bessel function.

4.2. Gaussian basis sets

There is a great advantage to be gained by the use of localized basis sets over a delocalized
basis like plane waves. In particular, the computations scale better for well localized orbitals.
One of the most widely used localized basis sets is the Gaussian basis. In a Gaussian basis,
the KS orbitals are expanded according to

ψi (r) =
∑
α,β,γ

Ci
αβγ Gαβγ (r; R) (4.44)

where the basis functions, Gαβγ (r; R), are centred on atoms and, therefore, are dependent on
the positions of the atoms. The basis functions generally take the form

Gαβγ (r; RI ) = Nαβγ xα yβzγ exp[−|r − RI |2/2σ 2
αβγ ] (4.45)

with integer α, β and γ for the Gaussian centred on atom I . The advantage of Gaussians is
that many of the integrals appearing in the DFT functional (and in other electronic structure
methods) can be done analytically. The main disadvantage, however, is that Gaussian basis
sets are nonorthogonal and, hence, the overlap matrix between basis functions needs to be
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included in the various energy terms. Moreover, being dependent on atomic positions, the
derivatives of the basis functions with respect to positions need to be computed. This leads
to a considerable degree of complication for MD. Finally, with Gaussian bases, it is difficult
to reproduce the correct asymptotic behaviour of the density, and one must always be aware
of the effects of basis set superposition errors. Many of these problems can be eliminated by
choosing to work with a simpler localized orthonormal basis set to be discussed in the next
subsection.

4.3. Discrete variable representations

While plane-wave basis sets have the advantage of simplicity and lack the spatial bias inherent
in Gaussian basis sets, they lead to O(N2 M) scaling for DFT calculations, where N is the
number of electronic states and M is the number of basis functions. Moreover, because they are
spatially delocalized, they are not optimal for use on emerging massively parallel computing
architectures because of their high communication overhead. As noted above, the problem of
delocalization is largely eliminated with Gaussian basis sets at the expense of considerably
increased complexity due to the nonorthogonality of the basis functions and the introduction
of basis set superposition error. A significant advantage might be gained if the localized
character of Gaussian basis sets could be achieved using simple, orthonormal basis functions
that are not centred on atomic positions, thereby avoiding the complexity of Pulay forces and
basis set super position error. In fact, such a basis set is possible in the form of the discrete
variable representation (DVR) [131–135], and implementation of AIMD with DVR basis sets
was recently introduced [101]. A one-dimensional DVR is composed of a set of N functions,
ui (x), i = 1, . . . , N , and a set of N grid points, xi , such that the basis functions satisfy a
Kroenecker δ property:

ui (x j) = δi j

ai
(4.46)

on the grid points. Here, ai is a (generally) complex number such that wi = |ai |2 defines a set
of quadrature weights. Therefore, the DVR functions behave as coordinate eigenfunctions on
a particular quadrature grid (see figure 1). In this sense, they are the real-space analogues of
plane waves, which are momentum eigenfunctions. Moreover, they can be constructed in such
a way that each DVR function is well localized about a point on the grid. DVRs are commonly
used in accurate bound-state and scattering calculations [131–135] and have been recently
adapted for use in DFT based electronic structure calculations [101]. The basis functions then
satisfy orthogonality and completeness relations of the form

N∑
k=1

wku∗
i (xk)u j (xk) = δi j

N∑
k=1

wku∗
k(xi)uk(x j) = δi j .

(4.47)

An important property of a DVR is that any position-dependent operator 	(x) is an
approximately diagonal DVR basis set. By defining a projection operator, PN =∑N

i=1 |ui〉〈u j |, it can be shown that

〈ui |PN 	(x)PN |u j〉 = 	(xi)δi j

〈ui |	(x)|u j〉 ≈ 	(xi)δi j

lim
N→∞

〈ui |	(x)|u j〉 = 	(xi)δi j

(4.48)



R1312 Topical Review

0.0 1.0 2.0 3.0
x

– 0.5

0.0

0.5

1.0

1.5

u(c
lu

s)
(x

)

Figure 1. Example DVR basis functions generated using equation (4.50) showing the localization
of the basis functions at grid points.

so that as the basis set size approaches infinity, position-dependent operators become exactly
diagonal.

DVR functions that satisfy equation (4.46) can be constructed from simpler basis functions
according to the boundary conditions of the problem. For example, a DVR appropriate for
periodic boundary conditions on a one-dimensional grid of N points can be constructed from
a sum of cosine functions according to

u(per)
l (x) =

√
1

N L

N∑
λ=1

cos[kλ(x − xl)] (4.49)

where kλ = 2π(λ − N ′ − 1)/L, λ, l = 1, . . . , N , and N ′ = (N − 1)/2, while a fixed-node
DVR appropriate for a one-dimensional cluster system can be constructed from sine functions
according to

u(clus)
l (x) = 2√

(N + 1)L

N∑
λ=1

sin kλx sin kλxl (4.50)

where kλ = πλ/L, λ = 1, . . . , N . Finally, a useful basis set for expansion of the KS orbitals
can be constructed from a direct product of these one-dimensional DVRs according to

�lmn(r) = u(a)
l (x)v(b)

m (y)q(c)
n (z) (4.51)

where a, b and c indicate the type of function used, i.e. periodic (per) or cluster (clus). Thus,
the basis functions can be tailored for different types of boundary condition, e.g. a periodic
DVR in one dimension and cluster DVRs in the other two could yield a basis set appropriate
for surface calculations etc. Once a direct product basis set is chosen, the KS orbitals are
expanded according to

ψi (r) =
∑
l,m,n

Ci
lmn�lmn(r) (4.52)

where Ci
lmn is a set of expansion coefficients.
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Specific terms in the energy functional follow directly from the form of the basis functions.
Thus, the kinetic energy can be expressed analytically as

εKE =
∑

i

∑
l,l′

∑
m,m′

∑
n,n′

Ci∗
lmn Tll′ ,mm′ ,nn′Cl

l′m′n′ (4.53)

where the kinetic energy matrix has the highly sparse form

Tll′ ,mm′,nn′ = t (a)
ll′ δmm′δnn′ + δll′ t

(b)
mm′δnn′ + δll′δmm′ t (c)

nn′ . (4.54)

The one-dimensional matrices are given by

t (per)
nn′ =




−
(

2π

L

)2 N ′

3
(N ′ + 1) n = n′

−(
2π
L

)2
(−1)n−n′

cos
[

π(n−n′)
N

]
2 sin2[π(n−n′)

N

] n = n′
(4.55)

for periodic and

t (clus)
nn′ =




− 1

L2

π2

2

[
2(N + 1)2 + 1

3
− 1

sin2( πn
N+1

)
]

n = n′

− (−1)n−n′

L2

π2

2

[
1

sin2
(

π(n−n′)
2(N+1)

) − 1

sin2
(

π(n+n′)
2(N+1)

)
]

n = n′
(4.56)

for fixed-node DVRs, respectively. Terms in the functional involving the electron density can
be computed by substituting equation (4.52) into (3.2):

n(r) =
nocc∑
i=1

[∑
l,m,n

Ci
lmn�lmn(r)

]2

. (4.57)

The resulting expression simplifies considerably when the density is subsequently evaluated
at the points of the DVR grid, and the latter are all that is required for computing energies
and forces. The gradient of the density, which is needed for GGA functionals, is computed
by differentiating equation (4.57) and evaluating the result at the DVR grid points. Resulting
derivatives of the DVR functions are computed once at the beginning and stored on one-
dimensional grids. A simplifying approximation to this approach can also be introduced by
postulating a similar DVR expansion for the density

n(r) =
∑

l,m,n,

Nlmn�lmn(r) =
∑
l,m,n

Nlmn ul(x)vm(y)qn(z). (4.58)

This allows the gradient of the density to be computed according to

∇n(xl, ym, zn) =
∑

l′
Nl′mnu′

l′(xl) +
∑
m′

Nlm′nv
′
m′(ym) +

∑
n′

Nlmn′ q ′
n′(zn). (4.59)

Here, again, the derivatives of the DVR functions can be computed once at the beginning of a
simulation and the values stored on one-dimensional grids. Our (as yet limited) experience, thus
far, is that the approximation in equation (4.59) tends to converge the total energy with the same
number of grid points as the exact method; however, the errors in the exact method are smaller
for DVR grids with fewer points. The nonlocal part of the pseudopotential is also evaluated
in real space using the expansion coefficients of the KS orbitals. In principle, the Hartree
energy could also be evaluated in real space using fast multipole moment (FMM) techniques.
However, for simplicity, we choose to employ a hybrid approach in which the Hartree energy
and long range part of the local pseudopotential energy are evaluated in reciprocal space using
the screening function methodology described in section 4.1. The short range part of the local



R1314 Topical Review

Table 1. Convergence of the total energy for the periodic eight-Si-atom system (see text) for the
DVR and PW basis sets. Total energies are in Hartrees, and the PW energy cut-off is in Ryd. The
energy difference (|�E|) measures the difference between the energy at each grid size/PW cut-off
and the converged value in kcal mol−1.

Grid size E(DVR) |�E| PW Ecut E(PW) |�E|
163 −31.8094 2.3845 4 −30.8337 609.8770
203 −31.8057 0.0628 6 −31.2026 378.3885
323 −31.8056 0 20 −31.7936 7.5301
483 −31.8056 0 50 −31.8050 0.3765
603 −31.8056 0 80 −31.8051 0.3138

pseudopotential is still evaluated in real space. The hybrid method involves the evaluation of
only two FFTs, one to obtain the density in reciprocal space and the other to transform the
long range contributions to the KS potential back to real space.

In order to demonstrate the validity of the DVR approach and compare its convergence
with basis set size to the standard PW scheme, we consider a system consisting of eight silicon
atoms in a simple cubic arrangement in a cubic periodic box of length 5.3 Å. The Kohn–Sham
orbitals are expanded about the �-point, exchange and correlation are treated within the LDA
and a Bachelet–Hamann–Schlüter type pseudopotential [117] is employed. Table 1 shows that
convergence to within 1 kcal mol−1 of the total energy with DVR grid size and PW energy
cut-off (chosen to give a real-space grid of the same size as the DVR grid) is achieved with a
factor of 14 fewer grid points in the DVR basis compared to the size of the FFT grid used in
the PW calculation. Note that, while the number of DVR coefficients per orbital on a 203 grid
is 8000 compared to 5573 PW coefficients per orbital with a 50 Ryd PW cut-off, the number of
PW density coefficients is 22 513 and the size of the FFT grid is 110 592 points, while for DVR
on a 203 grid, the same numbers are 1936 and 8000, respectively. Thus, it can be seen that the
number of operations needed to converge the total energy in the DVR basis is considerably
fewer than in the PW basis. Table 2 shows the convergence of the atomic forces as measured
by the quantity

F̄ =
√√√√ 1

N

N∑
I=1

FI · FI (4.60)

where FI is the force on atom I . The ability to generate accurate forces is of critical importance
in AIMD simulations. Again, it can be seen that complete convergence of the forces occurs
with a factor of 14 fewer grid points in the DVR basis than in the PW basis. Moreover, the
size consistency of the DVR basis was tested by plotting the energy per unit cell as a function
of lattice constant for eight- and 16-atom systems using DVR grid sizes of 203 and 40 × 202,
respectively (see figure 2). A similar PW control calculation was also performed using a
converged basis set size. It can be seen that the energy curves for each system size are very
similar and that the DVR and PW results match each other nearly perfectly.

5. The Car–Parrinello algorithm

5.1. The basic algorithm

In order to obtain the ground-state energy and forces, the KS functional in equation (3.3) must
be minimized over the set of single-particle orbitals subject to an orthonormality condition

〈ψi |ψ j 〉 = δi j . (5.1)
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Figure 2. Energy per unit cell as a function of lattice constant (L) using the DVR approach for
an eight-Si-atom system (solid curve) and a 16-Si-atom system (dashed curve), respectively. The
circles and triangles indicate the results from a converged plane-wave based calculation on the
same system.

Table 2. Convergence of atomic forces as measured by equation (4.60) in kcal mol−1 Å−1 for
the periodic eight-Si-atom system (see the text). |�F̄ | measures the difference between the force
measure and its converged value.

Grid size F̄(DVR) |�F̄ | PW Ecut F̄(PW) |�F̄|
163 13.32 9.37 4 101.49 97.54
203 3.92 0.03 6 12.83 8.88
323 3.97 0.02 20 3.89 0.06
483 3.95 0 50 3.97 0.02
603 3.95 0 80 3.96 0.01

Moreover, in order to combine this minimization with the nuclear dynamics of equation (2.12),
it is necessary to carry out the minimization at each nuclear configuration. Thus, if
equation (2.12) is integrated in an MD calculation using a numerical integrator, then the
minimization would need to be carried out at each step of the MD simulation and the forces
computed using the orbitals thus obtained.

Although a step-by-step minimization is an acceptable method for performing AIMD
simulations, its use can have a high computational overhead if accurate energy conservation is
desired [10]. In 1985, Car and Parrinello (CP) showed that this coupling between nuclear time
evolution and electronic minimization could be treated efficiently via an implicit adiabatic
dynamics approach [3]. In their scheme, a fictitious dynamics for the electronic orbitals is
invented which, given orbitals initially at the minimum for an initial nuclear configuration,
allows them to follow the nuclear motion adiabatically, and thus, be automatically at the
approximately minimized configuration at each step of the MD evolution.

In order to understand how the CP scheme works, consider a simple model system with
two degrees of freedom, x and y, described by a Hamiltonian H = p2

x/2mx + p2
y/2m y +V (x, y)

with mx � m y . Suppose, further, that x and y are maintained at separate temperatures Tx
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and Ty , via a thermostat coupling, such that Tx � Ty. The resulting dynamics under these
conditions can be analysed in a rigorous manner [17]. The essence of the analysis is that the y
motion can be shown to be driven by a time-averaged force over the x motion. That is, if �t
is a time interval characteristic of the y motion, then a numerical evolution step for y appears
as [136]

y(�t) = y(0) + �tvy(0) +
�t

m y

∫ �t/2

0
dt Fy[xadb(x(0), vx(0), y(0)); t] (5.2)

where xadb(x(0), vx(0), y(0); t) denotes the adiabatic evolution of x up to a time t = �t/2
starting from initial conditions x(0), vx(0) at fixed y = y(0). If the system is assumed to be
ergodic, then the time average in equation (5.2) can be replaced by a phase space average at
fixed y [136],

2

�t

∫ �t/2

0
dt Fy[xadb(x(0), vx(0), y(0)); t] =

∫
dx Fy(x, y)e−βx V (x,y)∫

dx e−βx V (x,y)
. (5.3)

The averaged force is derivable from 〈Fy(x, y)〉 = (∂/∂y)(1/βx) ln Zx(y; βx) where

Zx(y; βx) =
∫

dx e−βx V (x,y) (5.4)

from which it follows that the probability distribution of y in configuration space is P(y) ∝
(
∫

dx exp[−βx V (x, y)])βy/βx , where βx = 1/kTx and βy = 1/kTy. In the limit Tx → 0,
βx → ∞, the distribution can be shown to reduce to P(y) ∝ exp[−βy minx V (x, y)], where
the potential is minimized with respect to x at fixed y. This means that y can be described by
an effective Hamiltonian Hy = p2

y/2m y + minx V (x, y), which is the desired form for AIMD.
That is, for Tx � Ty, only very small fluctuations about minx V (x, y) will contribute to the
distribution, and y will move on a very good approximation to the correctly minimized surface.
As an example illustrating good versus poor adiabatic following for this simple x–y problem,
the reader should see figure 10 of [136]. The dynamics of x will be a fictitious adiabatic
dynamics in this case that only serves to generate the approximately minimized potential at
each value of y.

This idea can be realized in AIMD by introducing a fictitious dynamics for the electrons
(analogous to x) via a set of orbital ‘velocities’ {ψ̇i(r)} and a fictitious electronic ‘kinetic
energy’ (not to be confused with the true quantum kinetic energy) given by

Kfict = µ
∑

i

〈ψ̇i |ψ̇i 〉 (5.5)

where µ is a fictitious mass parameter (having units of energy × time2) that controls the
timescale on which the electrons ‘evolve’ with the condition that Telec � Tion. The orbitals are
incorporated into an extended dynamical system described by a Lagrangian1 of the form [3]

L = µ
∑

i

〈ψ̇i |ψ̇i 〉 + 1
2

N∑
I=1

MI Ṙ
2
I − E[{ψ},R] +

∑
i, j

[�i j(〈ψi |ψ j 〉 − δi j)] (5.6)

where E[{ψ},R] = ε[{ψ},R] + VNN(R). Here VNN(R) is now the electrostatic ion–ion
repulsion. The matrix �i j is a set of Lagrange multipliers introduced in order to ensure
that the condition 〈ψi |ψ j 〉 = δi j is satisfied dynamically as a constraint. This Lagrangian
specifies the true dynamics of the ions and a fictitious adiabatic dynamics for the electrons that

1 Although the problem could just as well be formulated in terms of an extended Hamiltonian as in the simple x–y
model, we prefer to use the Lagrangian formulation as in the original CP paper [3].
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generates the instantaneous forces on the ions from the approximately minimized electronic
configuration. The equations of motion are obtained from the usual Euler–Lagrangeequations:

d

dt

(
δL

δψ̇∗
i (r)

)
− δL

δψ∗
i (r)

= 0

d

dt

(
∂L

∂ṘI

)
− ∂L

∂RI
= 0

(5.7)

which gives the following coupled dynamical equations of motion:

MI R̈I = −∇I E[{ψ},R]

µψ̈i (r) = − δ

δψ∗
i (r)

E[{ψ},R] +
∑

j

� jψ j (r).
(5.8)

These are known as the CP equations. The electronic equation can also be written in an abstract
bra–ket form as

µ|ψ̈i 〉 = − ∂ E

∂〈ψi | +
∑

j

�i j |ψ j 〉. (5.9)

In reality, equation (5.9) formally represents an equation of motion for the expansion
coefficients of the orbitals. Thus, for plane wave and DVR basis sets, the electronic equation
of motion reads

µc̈i,g = − ∂ E

∂c∗
i,g

+
∑

j

�i j c j,g

µC̈ i
lmn = − ∂ E

∂Ci∗
lmn

+
∑

j

�i j C
j

lmn

(5.10)

respectively. For Gaussian basis sets, the equations of motion are complicated somewhat by
the position dependence of the basis functions and their nonorthogonality and will be deferred
briefly. In abstract form, the coefficient ‘force’ appearing in the CP equations, −∂ E/∂〈ψi |, can
be expressed formally in terms of the action of the KS Hamiltonian on the orbitals as f i HKS|ψi〉.
Below, an algorithm [137] for integrating the CP equations subject to the orthonormality
constraint will be presented.

Beginning with an initially minimized set of Kohn–Sham orbitals {|ψi(0)〉}, corresponding
to an initial nuclear configuration R(0), and initial velocities {ψ̇i(0)〉}, Ṙ(0), the first step is a
velocity update,

|ψ̇(1)

i (0)〉 = |ψ̇i 〉 +
�t

2µ
|ϕi(0)〉 i = 1, . . . , nocc

ṘI (�t/2) = ṘI (0) +
�t

2MI
FI (0) I = 1, . . . , N

(5.11)

followed by a position/orbital update,

|ψ̃i 〉 = |ψi (0)〉 + �t|ψ̇(1)
i 〉 i = 1, . . . , nocc

RI (�t) = RI (0) + �tṘI (�t/2) I = 1, . . . , N
(5.12)

where |ϕi(0)〉 = (∂ E/∂〈ψi |)|t=0 is the initial force on the orbital, |ψi〉. At this point, we do
not yet have the orbitals at t = �t or orbital velocities at t = �t/2 because the constraint
force �i j |ψ j 〉 needs to be applied to both the orbitals and orbital velocities via the Lagrange
multiplier matrix. This is accomplished by enforcing the orthogonality constraint on the
orbitals at t = �t:

〈ψi (�t)|ψ j (�t)〉 = δi j (5.13)
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where

|ψi (�t)〉 = |ψ̃i〉 +
∑

j

Xi j |ψ j (0)〉 (5.14)

where Xi j = (�t2/2µ)�i j . The multipliers, Xi j , are determined such that equation (5.13) is
satisfied. Substituting equation (5.14) into (5.13) yields a matrix equation for the Lagrange
multipliers:

X X † + X B + B† X† + A = I (5.15)

where Ai j = 〈ψ̃i |ψ̃ j〉 and Bi j = 〈ψi (0)|ψ̃ j 〉. Noting that A = I +O(�t2) and B = I +O(�t),
the matrix equation can be solved iteratively via

Xn+1 = 1
2 [I − A + Xn(I − B) + (I − B†)X†

n − X2
n] (5.16)

starting from an initial guess

X0 = 1
2 (I − A). (5.17)

Once the matrix Xi j is obtained, the orbitals are updated using equation (5.14) and an orbital
velocity update

|ψ̇(2)
i 〉 = |ψ̇(1)

i 〉 +
1

�t

∑
j

Xi j |ψ j (0)〉 (5.18)

is performed.
At this point, the new orbital and nuclear forces, |ϕi(�t)〉 and FI (�t), are calculated, and

a velocity update of the form

|ψ̇(3)

i 〉 = |ψ̇(2)

i 〉 +
�t

2µ
|ϕi(�t)〉 i = 1, . . . , nocc

ṘI (�t) = ṘI (�t/2) +
�t

2MI
FI (�t)

(5.19)

is performed. Again, we do not have the final orbital velocities until an appropriate constraint
force is applied. For the velocities, the appropriate force is the first time derivative of the
orthogonality constraint:

〈ψi (�t)|ψ̇ j (�t)〉 + 〈ψ̇i (�t)|ψ j (�t)〉 = 0 (5.20)

where

|ψ̇i (�t)〉 = |ψ̇(3)
i 〉 +

∑
j

Yi j |ψi (�t)〉 (5.21)

and Yi j are a new set of Lagrange multipliers for enforcing the condition equation (5.20).
Substituting equation (5.21) into (5.20) gives a simple solution for Yi j :

Y = − 1
2 (C + C†) (5.22)

where Ci j = 〈ψi (�t)|ψ̇(3)

i 〉. Given the matrix, Yi j , the final orbital velocities are obtained via
equation (5.21).

Under certain circumstances, the orthonormality constraint can become dependent on
atomic positions, in which case the basic CP algorithm acquires another level of complexity.
The position dependence can come about, for example, when Gaussian basis sets are used.
It can also occur when using the so-called ultrasoft pseudopotential scheme [119, 138, 139],
in which the standard orthogonality constraint is replaced by a more general constraint of the
form

〈ψi |B̂(R)|ψ j〉 = δi j (5.23)
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resulting from a relaxation of the norm-conservation condition. Here, B̂ is a position-
dependent operator required in the pseudopotential formulation. For details of this scheme,
the interested reader is referred to [119, 138, 139]. Defining the general overlap matrix as
Si j (R) = 〈ψi |B̂(R)|ψ j〉, which reduces to the ordinary overlap when B̂ = I , it is clear that
whenever S is position dependent, the CP equations need to be modified to read [138–140]

µ|ψ̈i 〉 = − ∂ E

∂〈ψi | +
∑
k, j

�k j
∂Skj (R)

∂〈ψi | = − ∂ E

∂〈ψi | +
∑

j

�i j B̂(R)|ψ j〉

MI R̈I = − ∂ E

∂RI
+

∑
i, j

�i j
∂Si j(R)

∂RI
= − ∂ E

∂RI
+

∑
i, j

�i j〈ψi |∇I B̂(R)|ψ j〉
(5.24)

which includes a contribution to the nuclear equation of motion from the constraint. Because
the constraint is now coupled to both the electronic and nuclear equations of motion, it is
necessary to iterate the constraint procedure through the nuclear update [139, 140], which
can have a high computational overhead. One way to overcome this problem is to employ
nonorthogonal orbitals as described in the next section.

5.2. Nonorthogonal orbitals

As alluded to above, the reformulation of the electronic structure problem in terms of a set of
nonorthogonal orbitals has a number of advantages in AIMD; in particular, it can simplify the
problem of a position-dependent overlap matrix. It can also aid in the control of adiabaticity
as will be discussed in section 5.3. The standard orthogonal orbitals |ψi 〉 may be transformed
to a set of nonorthogonal orbitals |φi〉 via a transformation of the form

|ψi 〉 =
∑

j

|φ j〉Tji (5.25)

where the matrix T is defined to be

T = O−1/2 (5.26)

where O is the overlap matrix with respect to the nonorthogonal orbitals:

Oi j = 〈φi |B̂(R)|φ j〉. (5.27)

Note that if B̂ = I, O is just the standard overlap of the nonorthogonal orbitals. It is easily
verified that the this transformation preserves the generalized orthogonality of the original
orbitals.

For use in the CP equations of motion, we begin with an extended Lagrangian of the
form [140]

L = µ
∑

i

〈φ̇i |φ̇i〉 + 1
2

∑
I

MI Ṙ
2
I − f

∑
i, j

M ji 〈φi |HKS|φ j〉 +
∑

α

λασα[{φ}] (5.28)

where M = O−1 and uniform occupation number, fi = f , have been assumed. In
equation (5.28), the fictitious kinetic energy is expressed directly in terms of the nonorthogonal
orbitals, and the energy functional is expressed in terms of the nonorthogonal orbitals via the
transformation in equation (5.25). The last term in equation (5.28) involves an arbitrary set
of constraints, σα[{φ}], α = 1, . . . , Nc, enforced by a set of Lagrange multipliers, {λα}.
The introduction of a constraint into the CP dynamics is done as a means of preventing the
orbitals from becoming linearly dependent as the dynamics proceeds. The precise form of the
constraint is not particularly important and, therefore, can be chosen to be simpler than the
generalized orthogonality constraint obeyed by the original orbitals. This method is known as
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the constrained nonorthogonal orbital (CNO) approach [140]. Two possibilities are a simple
orthogonality constraint,

〈φi |φ j〉 = δi j (5.29)

which involves nocc × nocc constraints, or a simple norm constraint,

〈φi |φi〉 = 1 (5.30)

which involves just nocc constraints. Finally, it is easily verified that the energy derivatives
required for the CP equations of motion are

∂ E

∂〈φi | = f
∑

j

(
∂ E

∂〈ψi | −
∑

k

B̂|ψk〉〈ψk |ĤKS|ψ j〉
)

Tji

∂ E

∂RI
= f

∑
i

(
〈ψi |∇I ĤKS|ψi 〉 −

∑
j

〈ψ j |∇I B̂|ψ j 〉〈ψ j |ĤKS|ψi〉
) (5.31)

expressed in terms of matrix elements and derivatives involving the original orbitals. The use
of the CNO method with a simple constraint such as the norm constraint condition can yield
a non-negligible saving in computational overhead in both the ultrasoft pseudopotential and
standard (norm-conserving) pseudopotential (B̂ = I ) schemes [140].

5.3. Adiabaticity control through isokinetic constraints

The CP technique relies heavily on the assumption that an adiabatic separation between the
fictitious electron dynamics and the nuclear dynamics can be maintained. In general, this will
only be true if the separation between the ground and first excited electronic surfaces, i.e. the
bandgap, is large compared to kT for all nuclear configurations. While this is generally true
for insulators and semiconductors, it is not true for metals and can be problematic in numerous
chemical reactions where the two surfaces approach each other at a transition state. In fact,
for metals, the CP dynamics is not correct because the motion does not occur on the ground-
state surface (see section 10), although it can, nevertheless, yield some useful information. A
proper treatment will be discussed in section 10. In such cases, the fictitious thermal energy
in the electronic subsystem can lead to excitations that destroy adiabaticity and lead to a rapid
exchange of energy between the nuclear and electronic subsystems. This will cause the nuclei
to cool and the electrons to heat, and the CP dynamics will cease to be meaningful.

One way to ameliorate this problem is to employ one of the widely used thermostatting
methods on the electronic subsystem, such as the Nosé–Hoover [141] or Nosé–Hoover
chain [142] methods, and several such approaches have been reported [137, 143]. However,
these may not be robust enough in certain systems or may allow fluctuations large enough
that adiabaticity is lost despite the action of the thermostat. Here, we describe an alternative,
highly robust, approach based on the Gaussian isokinetic ensemble method. The adaptation
of this method for CP dynamics was recently described by Minary et al [144]. The isokinetic
ensemble method employs a nonholonomic constraint to keep the fictitious electronic kinetic
energy in the CP Lagrangian fixed:

µ
∑

i

〈ψ̇i |ψ̇i 〉 = Ke. (5.32)

In order to impose this constraint, an additional Lagrange multiplier, α, is introduced into the
CP equations. Thus, in terms of orthogonal orbitals, the new electronic equation of motion
reads

µ|ψ̈i 〉 = |ϕi〉 +
∑

j

�i j |ψ j 〉 − α|ψ̇i 〉 (5.33)
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where |ϕi〉 = ∂ E/∂〈ψi |. Applying Gauss’s principle of least constraint, analytical expressions
for the Lagrange multipliers �i j and α can be determined analytically by differentiating the
orthogonality constraint twice and the isokinetic constraint once yielding

〈ψi |ψ̈ j 〉 + 2〈ψ̇i |ψ̇ j 〉 + 〈ψ̈i |ψ j〉 = 0∑
i

[〈ψ̇i |ψ̈i 〉 + 〈ψ̈i |ψ̇i 〉] = 0. (5.34)

Then, using the equation of motion to substitute in for |ψ̈i 〉 and its complex conjugate for 〈ψ̈i |
and solving for the two multipliers, one obtains

λi j = fi + f j

2
〈ψi |ĤKS|ψ j〉 − µ〈ψ̇i |ψ̇ j 〉

α = 1

2Ke

∑
i

[〈ψ̇i |ĤKS|ψi〉 + 〈ψi |ĤKS|ψ̇i〉
]
.

(5.35)

Remarkably, each of these expressions is what would be obtained for each multiplier in the
absence of the other constraint, showing that the two constraints are completely uncoupled.
Substituting equations (5.35) into the electronic equation of motion yields

µ|ψ̈i 〉 = − fi ĤKS|ψi 〉 +
fi + f j

2

∑
j

|ψi 〉〈ψi |ĤKS|ψi 〉

− µ
∑

j

|ψ j 〉〈ψ̇ j |ψ̇i〉 +
1

Ke
|ψ̇i 〉

∑
j

f j
[〈ψ̇ j |ĤKS|ψ j 〉 + 〈ψ j |ĤKS|ψ̇ j 〉

]
. (5.36)

In principle, equation (5.36) could be solved using a Liouville operator based approach as
discussed in [137]. Alternatively, the analytical expression for α could be used while retaining
a numerical approach for �i j ; however, as was shown in [144], this requires an iterative
procedure. Therefore, the simplest approach is to combine the isokinetic method with the
CNO approach outlined in section 5.2. This scheme would be described by an equation of
motion of the form

µ|φ̈i〉 = |ϕCNO
i 〉 +

∑
α

λα

∂σα

∂〈φi | +
f

2Ke
|φ̇i〉

∑
j

[〈φ̇ j |ĤKS|φ j 〉 + 〈φ j |ĤKS|φ̇ j 〉
]

(5.37)

where |ϕ(CNO)
i 〉 is the CNO force in equation (5.31). An algorithm for integrating

equation (5.37) was recently presented by Minary et al [144].

6. Calculating observables

Up to now, we have discussed a wide variety of simulation techniques including basis sets,
orbital choices and adiabaticity control methods. All of this methodology would, of course,
be useless if one could not compute experimentally measurable observables. In this regard,
AIMD simulations have some distinct advantages over force field based MD in that the former
permit direct access to the electronic structure and, hence, any observable that can be derived
directly from it. Thus, greatly widens the range of observables that can be computed from MD
simulations.

In MD calculations, observables are computed by performing averages of appropriate
functions, O(P ,R), of the momenta and coordinates of the particles in the system. The
procedure relies on the ergodic hypothesis which states that given an infinite amount of time,
a system will visit all of its accessible phase space so that ensemble averages of O(P ,R) can
be directly related to time averages of the MD trajectory:

〈O(P ,R)〉 = lim
T →∞

1

T

∫ T

0
dt O(P (t),R(t)); (6.1)
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equation (6.1) will, therefore, yield an equilibrium average for the system. The ensemble
average in equation (6.1) could refer to any pertinent ensemble. For example, a microcanonical
(NV E) ensemble average would be given by

〈O(P ,R)〉 = 1

N!h3N 	(N, V , E)

∫
dNP dNR O(P ,R)δ(HN(P ,R) − E) (6.2)

where HN(P ,R) is the classical nuclear Hamiltonian of equation (2.11) and 	(N, V , E) is
the microcanonical ensemble partition function. An average in the canonical (NV T ) ensemble
is given by

〈O(P ,R)〉 = 1

N!h3N Q(N, V , T )

∫
dNP dNR O(P ,R)e−βHN(P ,R). (6.3)

As a concrete examples, note that a radial distribution function (RDF) is given as an average:

g(r) = 1

4πr2ρN Q(N, V , T )

∫
dNP dNR

∑
I =J

δ(|RI − RJ | − r)e−βHN(P ,R)

= 1

4πρr2

〈
1

N

∑
I =J

δ(|RI − RJ | − r)

〉
. (6.4)

Similarly, the elastic neutron scattering structure factor can be computed by Fourier
transforming the RDF or by directly performing an ensemble (or trajectory) average over
S(k) = (1/N)| ∑N

I=1 exp(ik · RI )|2.
Dynamical properties such as spectra and transport coefficients can be obtained within

classical linear response theory from time correlation functions. The time correlation function
between two observables, A(P ,R) and B(P ,R), is given by

〈A(0)B(t)〉 = 1

Q(N, V , T )

∫
dNP dNR A(P ,R)B(Pt(P ,R),Rt(P ,R))e−βHN(P ,R) (6.5)

where (Pt(P ,R),Rt(P ,R)) designates the phase space trajectory obtained from the initial
condition (P ,R)). For A = B , equation (6.5) becomes an autocorrelation function. For
example, the diffusion coefficient can be computed from the velocity autocorrelation function:

D = 1

3

∫ ∞

0
dt

1

N

N∑
I=1

〈VI (0) · VI (t)〉. (6.6)

The velocity autocorrelation function can also be used to obtain a frequency spectrum for the
system known as the power spectrum by Fourier transformation:

I (ω) =
∫ ∞

−∞
dt eiωt 1

N

N∑
i=1

〈VI (0) · VI (t)〉. (6.7)

Although the power spectrum itself is not a directly measurable quantity, the frequencies at
which the peaks in the function occur can be compared to other spectroscopic measurements.
While this can be a useful comparison, it is obviously preferable to compute, for example, the
infrared (IR) or Raman spectrum, which can can be directly measured. For such quantities,
having access to the electronic structure is a significant advantage of the AIMD method. Below,
we discuss the calculation of several types of spectrum based on the use of the electronic
structure.
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6.1. Infrared spectrum

In linear response theory, the IR absorption coefficient, α(ω), is given by the Fourier transform
of the electric dipole moment correlation function

α(ω) = 4πω tanh(βh̄ω/2)

3h̄n(ω)cV

∫ ∞

−∞
dt e−iωt

〈
1

2

∑
k=x,y,z

[M̂k(0), M̂k(t)]+

〉
(6.8)

where n(ω) is the index of refraction of the medium, V is the volume, c is the speed of
light, M̂k(t) is the kth component of the electric dipole moment operator and [M̂k(0), M̂k(t)]+

is the anticommutator between the operators, [A, B]+ = AB + B A. Of the two terms in
the anticommutator, 〈M̂k(t)M̂k(0)〉 corresponds to an absorption process while 〈M̂k(0)M̂k(t)〉
corresponds to an emission process. In the approximation of classical nuclei, the dipole
moment operator is replaced by the classical dipole moment function. However, in order to
retain some quantum information, the factor tanh(βh̄ω/2) is retained so that the IR absorption
is expressed as

α(ω) = 4πω tanh(βh̄ω/2)

3h̄n(ω)cV

∫ ∞

−∞
dt e−iωt

〈 ∑
k=x,y,z

M̂k(0)M̂k(t)

〉
. (6.9)

Note that more sophisticated quantum corrections, for example, Egelstaff type
corrections [145], can also be applied. The total dipole moment can be decomposed into
ionic and electronic contributions according to

M = M (ion) + M (elec). (6.10)

Since the ions are treated as classical point particles, the ionic contribution can be computed
straightforwardly from the particle positions. The electronic contribution is more subtle. For
a non-periodic or cluster system, the expression

M (elec) = −e
∫

dx1 · · · dxNe φ∗
0(x1, . . . ,xNe )

[ Ne∑
i=1

ri

]
φ0(x1, . . . ,xNe ) = −e

∫
dr n0(r)r

(6.11)

where φ0 is the exact ground-state wavefunction, n0(r) is the ground-state density and ri is
the i th electron position operator, can be evaluated easily because the dipole moment operator
is a one-body operator. For periodic systems, however, equation (6.11) is not translationally
invariant. The proper generalization of the dipole moment expression is based on the so-called
Berry phase approach [146–149] and takes the form

M (elec)
k = −e Im ln

∫
dx1 · · · dxNe φ∗

0 (x1, . . . ,xNe )
[
e2π i

∑Ne
i=1 ri,k /Lk

]
φ0(x1, . . . ,xNe ) (6.12)

where M (elec)
k is the kth component of the electronic contribution to the dipole moment,ri,k is the

kth component of the i th electron position operator and Lk is the length of the supercell in the
kth direction (assuming an orthorhombic cell—see [150, 151] for generalizations to arbitrary
cell shapes), which is assumed to be cubic in this case. Clearly, equation (6.12) possesses the
correct translational symmetry. However, it introduces an additional complication because the
operator exp(2π i

∑
i ri,k/Lk) is now a many-body operator [148] so that the expectation value

in equation (6.12) cannot be expressed simply in terms of the electron density. As was shown
in [146, 147, 152], in order to compute the electronic component of the dipole moment within
KS theory, it is necessary to compute the matrix elements

Ri j,k = 〈ψi |e2π irk /Lk |ψ j〉 (6.13)
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using the KS orbitals (or their periodic parts when k-points other than the �-point are used)
and compute the dipole moment contribution from

M (elec)
k = −eLk

π
Im ln det(Ri j,k). (6.14)

It should be noted that the Berry phase approach is also the starting point for methods to find
unitary transformations among the orbitals that lead to a maximally set of orbitals known as
Wannier functions [150–152], which have been shown to be of great utility in studying other
electronic properties of a system, for example, local dipole moments [24].

6.2. Other spectra

Recently, a general formalism within DFT was introduced to compute the response of a
system to a small applied external perturbation [153], which is often what is measured in
experiments. The resulting variational DFT perturbation theory, which is in the same spirit as,
though conceptually different from, more standard formulations [154–156], leads to a general
scheme for computing the second derivative of the energy with respect to an applied field,
and, therefore, incorporates observables such as anharmonic Raman spectra [66] and nuclear
magnetic resonance (NMR) chemical shifts [157].

In the case of Raman spectroscopy, it is necessary to compute the full polarizability
tensor [66, 158]

αµν = −∂Pµ

∂Eν

= ∂2 E

∂EµEν

µ, ν = x, y, z (6.15)

where P is the induced polarization vector due to an externally applied electric field, E, and
E is the total energy. Within linear response theory, the Raman scattering cross section can
then be related to the autocorrelation functions of the polarizability tensor. For cubic systems,
the full tensor can be expressed as [66]

αµν(t) = λ(t)δµν + βµν(t) (6.16)

where βµν(t) is traceless. This subdivision will lead to isotropic and anisotropic spectra given
by [66]

Iiso(ω) = N

2π

∫
dt e−iωt 〈λ(0)λ(t)〉

Ianiso(ω) = N

2π

∫
dt e−iωt 1

10
〈Tr[β(0)β(t)]〉.

(6.17)

Again, the Berry phase formalism can be used to compute the polarization of the system [66].
Finally, it is important to mention that the DFT perturbation theory has also been employed

to derive a new approach to the calculation of NMR chemical shifts in periodic systems [157].
NMR spectra are among the most important tools used in chemistry to characterize a chemical
environment. Indeed, a variety of novel approaches have been introduced for computing the
chemical shifts [27, 157, 159, 160]. Unfortunately, the complexities of this methodology are
such that they will not be dealt with here in any amount of detail, but the interested reader is
referred to the above mentioned literature. However, in order to give a feel for the problem, we
note that the chemical shift tensor, like the polarizability tensor, is expressible as the derivative
of an induced effect due to an external field. In particular, it is the derivative of the induced
local magnetic field due to an externally applied magnetic field, B:

σµν(r) = ∂B(ind)
µ (r)

∂Bν

. (6.18)
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The induced field is determined by the total electronic current j(r) via

B(ind)(r) = µ0

4π

∫
dr′ (r − r′)

|r − r′| × j(r) (6.19)

where µ0 is the permeability of free space. For a Hamiltonian based formalism, the applied
magnetic field, B, is represented in terms of a vector potential, A(r) with B = ∇ × A(r).
Thus, a gauge choice must be made for A(r), and a typical form is [157]

A(r) = − 1
2 (r − R) × B (6.20)

where R is known as the gauge origin. Thus, it can be seen that the position operator problem in
periodic systems is prevalent here as well. In order to solve the problem, Mauri et al proposed
modulating B by a periodic function [27, 161–165], whereas Sebastiani and Parrinello have
applied the Berry phase approach [157]. Another technical difficulty that arises in a plane-
wave basis stems from the fact that the chemical shifts are very sensitive to the shape of the
wavefunction in the core region, which is pseudized. This problem has been addressed by
Gregor et al [159], who have developed a set of additive constant corrections that accurately
reproduce the all-electron magnetic shieldings.

7. Structure and dynamics in liquids and solutions

7.1. Structure and dynamics of liquid water

Because of its obvious special importance, liquid water at 300 K has received considerable
attention in the AIMD literature [18–30]. Obtaining accurate RDFs compared to experimental
measurements [166–170] has proved to be challenging because of both system and basis set
size effects in the AIMD simulations [24, 30] and because of the difficulty of extracting these
quantities directly from the neutron and x-ray diffraction data [171]. However, the most recent
studies [30] have shown that reasonable agreement is obtained with the latest experimental
data [169, 170] using a system of 64 water molecules with a plane-wave cut-off of 80 Ryd. In
this calculation, Troullier–Martins type atomic pseudopotentials were used to represent core
electrons [118] and the exchange functional of Becke [103] and the correlation functional of
Lee and Parr [104] (the so-called BLYP functional) were employed. A run length of 11 ps with a
time step of 0.17 fs at the �-point of the Brillouin zone was carried out and the RDFs extracted
from the trajectory. The tendency toward overstructuring in the OH and HH distribution
functions is attributed to the neglect of nuclear quantum effects (see section 9). Another recent
study [29] showed that the exchange correlation functional of Perdew et al [106] also yields
an OO RDF in good agreement with experiment for a run of length 7.5 ps.

In addition to structural properties of water, AIMD simulations have been performed to
compute a variety of other properties, including the IR spectrum [21] and the average dipole
moment [24], both directly connected to the electronic structure of the system, using the
techniques alluded to in section 6. In both cases, good agreement with experiment [172–174]
was obtained using system sizes of 32 and 64 water molecules, respectively, a plane-wave
cut-off of 70 Ryd and the BLYP functional, and run lengths of 10–12 ps. Finally, the problem
of autoionization of water was addressed by Geissler et al [28] in a novel study that combined
the transition path sampling method [175, 176] with AIMD. It was shown that a metastable
charge-separated state requires the breaking of a hydrogen bond along the hydrogen-bonded
‘wire’ or ‘chain’ of water molecules connecting a nascent contact H3O+/OH− ion pair formed
upon dissociation.

7.2. Structure and dynamics of liquid ammonia

Ammonia is an important weakly hydrogen-bonded liquid that is employed as a solvent in
many common organic reactions and in solutions with metals. Its structure has recently been
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Figure 3. The neutron scattering partial structure factors and RDFs for liquid ammonia at 260 K.
Panels (a)–(c) compare, respectively, the computed NN, HH and NH partial structure factors (solid
curves) [31, 33] to those from experiment (dashed curves) [177]. Panels (d)–(f) show the same
comparison for the RDFs.

determined experimentally by neutron diffraction [177] so that experimental partial structure
factors and RDFs are now available. As studies of chemical processes in ammonia solvent are
a prime application for AIMD techniques, it is important to validate the approach by studying
the properties of the neat liquid and comparing to available experimental data.

To this end, AIMD simulations based on the CP equations of motion have been carried
out on a sample of 32 ammonia molecules in a box of length 11.27 Å with periodic boundary
conditions at temperatures of 260 and 273 K [31, 33]. Exchange and correlation were treated
using the BLYP GGA functional [103, 104] and the KS orbitals were expanded in a plane-
wave basis up to a cut-off of 70 Ryd. Core electrons were treated using the pseudopotentials of
Troullier and Martins [118]. The system was allowed to equilibrate for 2.2 ps, and production
runs of 6.0 ps were carried out using a time step of 0.12 fs.

Figure 3 shows the computed neutron scattering partial structure factors, HNN(q), HHH(q)

and HNH(q), together with the experimental results [177]. As can be seen, very good agreement
with experiment is obtained. Also shown in figure 3 are the computed RDFs together with
those extracted from the experimental data [177]. Again, reasonably good agreement is
obtained. In addition, the self-diffusion constant was determined from the calculation to
be 1.1 × 10−4 cm2 s−1 [33], which compares favourably with the experimental value of
1.0 × 10−4 cm2 s−1 [178].

7.3. Structure of liquid methanol at 300 K

Another important hydrogen-bonded liquid is methanol (CH3OH). Like ammonia, methanol
is also used as a solvent in many common organic reactions. It is also a industrially important
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Figure 4. Illustration of the subdivision of a methanol molecule into a QM region and an MM
region. The figure shows that the division occurs by cutting the CO bond. Methyl hydrogens are
denoted Mi , i = 1, 2, 3.

liquid because of its role in emerging fuel-cell technologies. The structure of liquid methanol
has also been determined recently by neutron diffraction [179, 180], again making partial
structure factors and RDFs readily available for comparison with AIMD calculations. We
have recently carried out studies of proton transport in liquid methanol [34], and as part of
these studies, we carried out a simulation of the pure liquid in order to compare the structural
properties with those determined experimentally.

The AIMD simulation protocol employed 32 methanol molecules in a periodic box of
12.93 Å. Exchange and correlation were, again, treated using the BLYP GGA functional.
Studies employing two different modelling schemes were carried out. First, an ultrasoft pseu-
dopotential approach [119, 138, 139] with a plane-wave cut-off of 25 Ryd was employed for a
run length of 20 ps. In a second scheme, a hybrid DFT/force field approach (so-called quantum
mechanical/molecular mechanical or QM/MM scheme—see section 8.5) was developed [35]
in which the OH group was treated at the QM level via the BLYP functional [103, 104] and
the CH3 group was treated at the MM level via the AMBER force field [181] (see figure 4). In
this scheme, the CO bond bridges the QM and MM regions in each methanol molecule via a
monovalent carbon pseudopotential [182–184], and the electrons interact with the MM atoms
with a pseudopotential of the form Vpseud(r) = A exp(−γ r) with A = 81.5763 kcal mol−1

and γ = 0.5292 Å. For this case, a run length of 10 ps was carried out [35].
Figure 5 shows the computed and experimentally determined partial structure factors. The

collective partial structure factors HXX(q) and HXH(q) are defined to be

HXX(q) = 0.042HCC(q) + 0.073HCO(q) + 0.253HCM(q) + 0.032HOO(q)

+ 0.220HOM(q) + 0.380HMM(q) (7.1)

HXH(q) = 0.205HCH(q) + 0.179HOH(q) + 0.616HMH(q) + 0.0019HCM(q)

+ 0.0055HMM(q) + 0.0016HOM(q) (7.2)

where M denotes a methyl hydrogen. Again, it can be seen that good agreement is obtained,
although, for this system, the experimental data are somewhat noisier. Also shown in figure 5
are the OO, OH and CC RDFs together with those reduced from the experimental data. It can
be seen that the QM/MM model gives somewhat better agreement with experiment for the OO
and OH RDFs compared to the ultrasoft pseudopotential method, although, as was discussed
in [34], there is a considerable spread in reported values of the location of the OO peak.
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Figure 5. The neutron scattering partial structure factors and RDFs for liquid methanol at 300 K.
Panels (a), (c), (e) compare, respectively, the computed XX, XH and HH partial structure factors
(solid curves) as defined in equations (7.1) and (7.2) [34, 35] to those from experiment (dashed
curves) [179]. The solid line with filled squares shows the partial structure factors from [34].
Panels (b), (d), (f) show the same comparison for the OO, OH and CC RDFs, respectively.

7.4. Structure and dynamics of high and low concentration KOD solutions

Understanding the behaviour of charged defects in aqueous environments created by the
addition of protons (H+) or hydroxide ions (OH−) is of fundamental importance in the
chemistry of acids and bases, in biological processes such as proton transport across lipid
membranes and in industrially and technologically important applications such as fuel cell
operation, saponification and industrial catalysis. Aqueous solutions containing hydronium
and hydroxide ions are known to be excellent proton conductors; however, the microscopic
details of the transport process remain controversial. Part of the controversy is due to the
difficulty in obtaining definitive experimental evidence pointing to a particular mechanism.
Thus, high level AIMD simulations can play a unique role in uncovering these mechanistic
details while generating observables that can be compared directly with experiment. In this
section, we will report AIMD studies of the IR spectrum of low (1.5 M) and high (13 M)
concentration KOD solutions and then interpret these results in section 9.3, where we will
discuss AIMD studies aimed at elucidating these mechanisms.

In the present study [42], the 1.5 M solution consisted of 32 water molecules and one
dissociated KOD in a 10.25 Å cubic periodic box, while the 13 M solution consisted of 27 water
molecules and eight dissociated KODs in a 10.15 Å cubic periodic box. KOD is chosen over
KOH in order to reduce the importance of nuclear quantum effects associated with the light
hydrogen atoms. The KS orbitals were expanded in a plane-wave basis up to a cut-off of
70 Ryd, and exchange and correlation were treated using the BLYP functional [103, 104].
Core electrons were represented using the Troullier–Martins pseudopotential [118] with a
semi-core pseudopotential employed for potassium. Simulations of length 10 ps were carried
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out using a time step of 5 au using a fictitious electron mass of 600 au. This simulation length
includes 2 ps of equilibration. During production, the dipole moment was computed and the
methodology of section 6 was used to compute the IR spectrum. Because the simulation length
is relatively short, it is necessary to employ maximum entropy techniques [185] to extract the
spectrum. In the present study, a 260-point Levinson algorithm [185] was employed. In order
to check the sensitivity of the spectrum to the order of the algorithm, the spectrum was also
computed using 220, 240 and 280 points and was found not to be sensitive to the order.

The IR spectra obtained are shown in figure 6 together with the measured spectrum of
a 14 M KOH solution [186]. The figure shows that all of the features of the experimental
spectrum at 14 M are reproduced. The shift in the frequencies is due to the use of deuterium
rather than hydrogen in the present simulations, a fact that may also account for the increased
sharpness of the peaks compared to experiment (although other influences such as finite-size
effects and the short timescale may also contribute). An important difference between the high
and low concentration spectra can be seen: the broad stretching peak in the low concentration
spectrum splits into a distinct peak at approximately 2200 cm−1 and a shoulder at approximately
2400 cm−1. These two features are assigned to the water and hydroxide OH stretching modes,
respectively. In addition, the small peak at 1950 cm−1 in the 1.5 M solution is dramatically
enhanced in the 13 M solution. This peak is assigned to the stretch of the OH bond of waters
in the first solvation shell of hydroxide donated in hydrogen bonds to the hydroxide oxygen.
The pronounced peaks in the 13 M spectrum are a consequence of the high coordination of the
hydroxide ion in the solution [44, 45, 48, 187]. In figure 7, the O*O and O*H RDFs, where
O* indicates the hydroxide oxygen, together with the integrated coordination numbers at both
concentrations, are shown. The figure shows that, on average, the hydroxide is coordinated by
approximately four water molecules. The specific complexes and role of these complexes in
charged defect transport will be discussed in section 9.3. Figure 7 also shows the OO and OH
RDFs and integrated coordination numbers of water molecules in both the 1.5 and 13 M KOD
solutions. The most striking feature of these RDFs is the fact that, in the 13 M solution, there
is a shift in the peak locations and a dramatic change in the average coordination. Specifically,
the ordinary fourfold coordination is not present at 13 M but, rather, water molecules tend to be
threefold coordinated on average. This change in the water structure will be seen to have an im-
portant effect on the transport mechanism of charged defects in basic solutions (see section 9.3).

8. Other applications

8.1. Solid-state proton conduction

Solid-state proton conductors are systems of considerable importance because of their potential
uses in solid-state batteries, sensors and other electrochemical devices. For this reason, there
is a growing interest in such systems. However, unlike in electrolyte solutions, where proton
conduction occurs readily, solid-state proton conduction is a relatively rare process. Hence,
proton conducting solids are of particular scientific interest because of their novelty. Indeed, a
particular class of materials, proton conducting molecular crystals, have received considerable
attention because of their wide range of structural and dynamical characteristics. Many such
crystals can undergo temperature and/or pressure induced structural phase transitions, and, in
some cases, thermal decomposition may occur with a concomitant release of large amount
of energy. One material that has been studied extensively is the ammonium salt crystal,
ammonium perchlorate (NH4ClO4).

Ammonium perchlorate (AP) is one of the showcase examples of a thermally labile
material that can undergo a decomposition process at high temperature, leading to its use
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Figure 7. Panels (a)–(b)—RDFs with respect to the hydroxide oxygen O* for 13 M KOD solution
(solid curves) and 1.5 M KOD solution (dashed curves) at 300 K. Panels (a) and (b) show the
O*O and O*H RDFs, respectively. The integrated coordination numbers are shown in solid curves
with filled circles for 13 M KOD solution and in dashed curves with filled squares for 1.5 M KOD
solution. Panels (c)–(d)—Oxygen–oxygen (panel (c)) and oxygen–hydrogen (panel (d)) RDFs
for bulk water in 13 M KOD solution (solid curves) and 1.5 M KOD solution (dashed curves) at
300 K. Also shown are the integrated coordination curves using the same convention as in panels (a)
and (b).

in applications such as rocket propulsion. The crystal structure of AP depends on temperature:
at temperatures below 513 K it possesses an orthorhombic unit cell, while at temperatures
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above 513 K it undergoes a structural phase transition to a simple cubic structure. Particular
attention has been devoted to the electrical conductivity of AP because of the suggestion that a
charge-transfer step plays a fundamental role in the thermal decomposition process [188, 189].

Additional experiments on AP crystals [190] indicate that the electrical conductivity of
AP increases markedly when it is exposed to an ammonia-rich atmosphere. Based on these
findings, it was suggested that the increased conductivity is due to an anomalous mechanism
in which the mobile NH+

4 ions can transfer protons to the neutral ammonia molecules at lattice
vacancies or at interstitial sites. The newly formed neutral ammonia molecules at lattice sites
subsequently become recipients of excess protons from NH+

4 ions now at interstitial sites. This
mechanism is expected to dominate, for example, over the formation of Schottky or Frenkel
defects [188].

In order to explore this proposed mechanism, we carried out AIMD simulations of
AP crystal in the low temperature (orthorhombic) [191] and high temperature (cubic) [192]
phases [52] and extracted the IR spectra using the methods of section 6. In both cases, run
lengths of approximately 15 ps were carried out using the BLYP functional [103, 104] and
a plane-wave basis with a cut-off of 70 Ryd in a supercell consisting of two unit cells (box
lengths given by Lx = 9.20 Å, L y = 11.60 Å, Lz = 7.45 Å, orthorhombic and Lx = 15.26 Å,
L y = Lz = 7.63 Å) at temperature of 300 and 530 K, respectively. In addition, we performed
simulations in which neutral ammonia molecules were placed at interstitial sites up to a mole
fraction of 0.5 (this system is denoted the AP·(NH3)0.5 system) and extracted the IR spectra
from run lengths of approximately 27 ps for supercells consisting of two (Lx = 15.26 Å,
L y = Lz = 7.63 Å) and four (Lx = L y = 15.26 Å, Lz = 7.63 Å) unit cells at a temperature
of 530 K. Figure 8 shows the comparative IR spectra. Again, the spectra are obtained using
the Levinson maximum entropy algorithm [185]. For the AP·(NH3)0.5 case, practically no
difference is observed between the two- and four-unit-cell simulations (hence, only the latter
is shown). The spectrum for the orthorhombic phase is generally in good agreement with the
measured spectrum [193]. The most striking feature of the spectra is that the NH stretch band
broadens in going from the orthorhombic to the cubic phases and extends into a lower frequency
region in the AP·(NH3)0.5 system. Visual inspection of the trajectories in the AP·(NH3)0.5 case
shows that this red shifting in the NH stretch band is due to the formation of N2H+

7 complexes
in which excess protons are bound between two ammonia moieties, forming a relatively strong
hydrogen bond. In these complexes, frequent proton transfer is observed. Indeed, recent
AIMD studies of the N2H+

7 complex in the gas phase [33] confirm that proton transfer between
the NH3 and NH+

4 moieties is possible, although the proton transfer free energy barrier is
somewhat higher in the crystal (∼1.8 kcal mol−1). The computed IR spectra constitute clear
experimentally verifiable evidence for the formation of such hydrogen-bonded complexes
and, therefore, of the anomalous proton transfer mechanism. That the NH3 and NH+

4 units
are observed to exhibit ‘nearly free’ rotation in all phases (in agreement with experimental
observation [194]) suggests that in the AP·(NH3)0.5 system, rapid rotation of newly formed
neutral NH3 units allows the latter to pick up protons by rapidly rotating their lone pairs toward
other NH+

4 units in lattice and interstitial sites.

8.2. Ziegler–Natta catalysis

Ziegler–Natta polymerization of α-olefins is one of the most widely used industrial catalytic
processes currently in use. In a typical preparation, a MgCl2(110) surface is used as a support
for the deposition of TiCl4. The mechanistic details of the polymerization process, which
were until recently not precisely known, have been elucidated in a series of elegant AIMD
calculations employing the BLYP functional [103, 104] and a plane-wave basis with a cut-off
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Figure 8. Computed IR absorption spectrum for an AP crystal in the orthorhombic phase (dashed
curve), cubic phase (long dashed curve) and the cubic AP·(NH3)0.5 system (solid curve).

of 40 Ryd and nonlinear core corrections [195] for titanium of the formation of polyethylene
on the surface by Parrinello and co-workers [76–78]. These studies suggested that fivefold
coordinated Ti sites allow for relatively more facile insertion of ethylene than sixfold sites
as had been previously assumed [196]. These fivefold sites were also shown to have the
proper stereoselectivity needed to catalyse formation of polypropylene [77]. Stereoselectivity
is one of the most important features of Ziegler–Natta catalysis. Finally, a series of studies of
different MgCl2 surface cuts was performed in order to explore how the morphology of the
surface affects the mechanism of the polymerization process [78].

8.3. Influence of knots on polymer strength

An important question in polymer chemistry concerns the influence of knots on the strength
of the polymer chain. Generally, any long polymer chain, whether it be polyethylene or
DNA, is thought to contain some degree of knotting, usually in the form of simple trefoil
or overhand knots. The presence of such knots is suspected to affect the strength of the
chain, causing it to weaken and allow breaking at the entrance to the knot. In a recent series
of AIMD based studies [84–87], the influence of knots and the mechanistic details of the
chain rupturing process was explored using the BLYP functional [103, 104] and a plane-wave
basis with a cut-off of 60 Ryd and explicit treatment of electron spin. These studies revealed
that knots in a polyethylene chain do, indeed, weaken the chain and that rupturing occurs
preferentially at the entrance of the knot [84, 85]. Moreover, it was shown [86, 87] that the
radicals formed after the chain has broken are able to recombine to form cyclic alkanes and
to undergo disproportionation processes with nearby chain segments. Finally, the influence of
the environment, namely neighbouring chains, was studied [87], and was shown to make little
difference to the fundamental findings obtained in the single-molecule simulations.
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8.4. Molten silicates

Molten silicates are the precursors to industrially and technological important materials such
as ceramics and nuclear waste confinement glasses. They also occur naturally in the form of
geologic magmas. Despite their importance, the microscopic characteristics of silicate melts
is not well understood because of the difficulty of studying the molten state experimentally.
Recently, we carried out a series of AIMD simulations aimed at characterizing the structure of
a calcium aluminosilicate (CAS) CaO–Al2O3–SiO2 melt in comparison to molten SiO2 [74].
The composition of the CAS system was taken to be 22SiO2, 4Al2O3 and 7CaO because
of its similarity to nuclear waste confinement materials. The system was studied using the
BLYP functional [103, 104] using a plane-wave basis set with a cut-off of 70 Ryd. The
introduction of the network modifier cation Ca2+ into the tetrahedral silica network has a
dramatic effect on the physical properties of the system, including, for example, a significant
reduction in the viscosity. This is due to a disruption of the network by formation of so-
called non-bridging oxygens (NBOs), i.e. oxygens which do not bridge two tetrahedral SiO4

or AlO−
4 units. In principle, the effect of the modifier cations can be compensated by the

AlO−
4 tetrahedra, so that the number of NBOs should be given accurately by stoichiometry.

Our calculations showed, however, that for a CAS melt, the number of NBOs exceeds the
stoichiometric prediction as has been observed experimentally for CAS glasses [197, 198]. In
addition, the calculations predict a strong violation of the aluminium avoidance principle, an
empirical rule which states that in aluminosilicates, Al–O–Al linkages are not present [199].
Our finding is in accordance, however, with the experimental observation that the aluminium
avoidance principle can be violated when Ca is the network modifier [200–202]. Finally, defect
structures, in particular fivefold coordinated Al and oxygen tri-clusters (oxygens bonded to
three network forming atoms), and their possible role in the creation of NBOs, were identified.
Currently, we are performing quench simulations to obtain CAS glass structures and computing
the NMR chemical shifts of these structures [203].

8.5. Systems of biological importance

Despite their high computational overhead,AIMD calculations are beginning to have an impact
on problems of biological importance. Clearly, it is not possible to treat entire biological
macromolecules in solution at a fully ab initio level, as these systems contain typically
104–105 atoms. However, with the identification of specific issues that may be explored
via a small fragment [204] or model system [50] or through emerging techniques which
combine ab initio level treatments for small, chemically active regions of a large molecule
and an empirical force field for the remainder of the system [182, 184, 205–215] (so-called
quantum mechanical/molecular mechanical or QM/MM calculations), important questions can
be answered.

Recently, AIMD calculations were employed to address an important problem in the design
of inhibitors for the HIV-1 protease [88] and the structure of the uncomplexed active site [216].
The HIV-1 protease plays a vital role in the replication cycle of the AIDS virus by cleaving
a polyprotein encoded by the gag and pol genes into the structural proteins and enzymes of
the virus. It is a relatively small homodimeric enzyme consisting of two covalently bonded
99-residue strands with an active site composed of two catalytic aspartic acid residues and has
become an important target for AIDS therapies. The carboxylate oxygens assist in the attack
of a water molecule on the scissile peptide bond that causes the required cleavage. Inhibition
of this enzyme interrupts the replication cycle at a crucial stage, leading only to immature and
noninfectious viral particles. An important question in the design of inhibitors for this enzyme
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concerns the protonation state of the catalytic oxygens alone and in complexes with particular
classes of drugs, as these serve as possible anchor points for hydrogen bonding of an inhibitor to
the active site. Indeed, a design feature that is often employed in commercially available drugs
as well as novel fullerene-derivative inhibitors [217–219] is an OH group that can form such
hydrogen bonds. Recent 13C NMR chemical shift measurements of a complex of the HIV-1
protease with pepstatin A has been interpreted as indicating a monoprotonated state for the
active site because the signal appears to arise from chemically nonequivalent sites. However,
the chemical inequivalence can also arise from interactions with nonsymmetric neighbouring
groups. A combination of ab initio geometry optimizations and AIMD simulations over
which the 13C NMR chemical shift was averaged strongly suggest that the interpretation of a
monoprotonated active site is not correct and that the actual protonation state is diprotonated,
i.e. the Asp residue from each strand is actually monoprotonated. This finding not only has
important implications for understanding the catalytic mechanism of the protease but also
provides important information for the design of effective inhibitor compounds.

In other studies, hybrid QM/MM techniques employing DFT based AIMD with empirical
force fields have been used to study catalytic mechanisms of various enzymes and to explore
the design of possible biomimetics [90, 91] and structure, dynamics and binding mechanisms
in myoglobin [92, 93]. Moreover, various schemes have been introduced for placing QM/MM
type calculations on a rigorous footing [184, 215], and it is expected that as computing power
increases, such methods will play a vital role in addressing numerous important questions of
biological relevance.

9. The path integral Born–Oppenheimer approximation and ab initio path integral
molecular dynamics

Up to this point, we have treated the nuclear motion within the framework of classical
mechanics. Although this approximation is often acceptable in many situations, there will be
numerous cases, particularly involving light nuclei such as hydrogen,where this approximation
breaks down. In such cases, it is necessary to account for nuclear quantum effects at finite
temperature. One of the most widely used methods for accomplishing this in large systems is
within the Feynman path integral formulation of quantum statistical mechanics [12, 13]. This
formulation allows the quantum equilibrium properties of a system to be computed within an
AIMD scheme [14–16]. The procedure is relatively straightforward when spin statistics can
be neglected. For bosonic exchange, stable MD based schemes have been proposed based on
the calculation of the permanent of a matrix [220]. For fermionic exchange, although similar
schemes exist based on the determinant, the inherent sign problem still remains an extremely
challenging problem. In addition, the problem of computing quantum dynamical properties
within the path integral formulation is also an immensely challenging problem, and, to date,
no completely satisfactory procedure exists for effectively dealing with the rapidly oscillating
phase factors that arise. However, effective approximate strategies have been proposed based
on the use of the so-called ‘path centroid’ [17, 51, 221, 222] which can be employed when
quantum effects are not strongly dominant or are not strongly anharmonic, the use of filter
functions [223, 224], analytic continuation methods [225] or hierarchical Monte Carlo (MC)
schemes [226].

The Born–Oppenheimer approximation described in section 2 can be recast in statistical
mechanical language using the canonical ensemble, for which the partition function is given
by

Q(N, V , T ) = Tr exp[−β H ] (9.1)
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where H is the Hamiltonian of equation (2.1). The trace in equation (9.1) can be performed
in the coordinate basis, which leads to an imaginary time path integral expression of the form

Q(N, V , T ) =
∮ ′

DN R(τ )

∮ ′
DNe r(τ ) exp

{
−1

h̄

∫ βh̄

0
dτ

[
TN(Ṙ(τ ))

+ Te(ṙ(τ )) + Vee(r(τ )) + VNN(R(τ )) + VeN(r(τ ),R(τ ))
]}

(9.2)

where the 3N ×3Ne-dimensional functional integral is taken over all cyclic paths in imaginary
time, τ ∈ [0, βh̄], satisfying

ri (0) = ri(βh̄) RI (0) = RI (βh̄) i = 1, . . . , Ne, I = 1, . . . , N (9.3)

and all permutations of these paths as required by Bose–Einstein or Fermi–Dirac statistics (as
indicated by the primes on the integrals) [10]. If the above path integral is treated using the
influence functional approach [227], then equation (9.2) is written as

Q(N, V , T ) =
∮ ′

DN R(τ ) exp

{
−1

h̄

∫ βh̄

0

[
TN(Ṙ(τ )) + VNN(R(τ ))

]}
F[R(τ )] (9.4)

F[R(τ )] =
∮ ′

DN R(τ ) exp

{
−1

h̄

∫ βh̄

0

[
Te(ṙ(τ )) + Vee(r(τ )) + VeN(r(τ ),R(τ ))

]}
(9.5)

where F[R(τ )] is known as the influence functional. Indeed, it is clear that F[R(τ )] is
a partition function for the electronic subsystem along a given nuclear path R(τ ). At a
fixed nuclear configuration, R, this partition function could be computed from the electronic
eigenvalues, εn(R), and would be related to the negative exponential of the free energy:

F(R) =
∑

n

e−βεn(R) = e−β A(R) (9.6)

where A(R) is the free energy at nuclear configuration R. In the Born–Oppenheimer
approximation, adiabaticity must be assumed along a nuclear path, i.e. at each τ , the electronic
eigenvalue problem is solved for the specific configuration, R(τ ), at each imaginary time
point, τ . This means that the influence functional, F[R(τ )], and hence the free energy, must
be local in τ . This leads to a convenient expression for the path integral:

Q(N, V , T ) =
∮ ′

DN R(τ ) exp

{
−1

h̄

∫ βh̄

0

[
TN(Ṙ(τ )) + VNN(R(τ )) + A(R(τ ))

]}
(9.7)

known as the free energy Born–Oppenheimer path integral approximation introduced by Cao
and Berne [228].

On the other hand, if we simply considered the nuclear eigenvalue problem in
equation (2.6), we would arrive at a path integral expression in which we perform a separate
path integral on each electronic surface, εn(R), and then sum over the surfaces, i.e.

Q(N, V , T ) =
∑

n

∮ ′
DN R(τ ) exp

{
−1

h̄

∫ βh̄

0

[
TN(Ṙ(τ )) + VNN(R(τ )) + εn(R(τ ))

]}
. (9.8)

Differences between these two path integral expressions are discussed in detail by Cao and
Berne [228]. It is important to note that when only the electronic ground state is important,
the two expressions are equivalent, since then

F[R(τ )] = exp

[
−1

h̄

∫ βh̄

0
dτ ε0(R(τ ))

]
(9.9)

and the path integral expression reduces to

Q(N, V , T ) =
∮ ′

DN R(τ ) exp

{
−1

h̄

∫ βh̄

0

[
TN(Ṙ(τ )) + VNN(R(τ )) + ε0(R(τ ))

]}
(9.10)

which is the form on which we shall focus here.
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Figure 9. Illustration of the path integral representation of the quantum canonical partition
functions. The representation of a quantum particle as a cyclic polymer chain in the discretized
form of the path integral is shown in (a). The interaction between two quantum particles is shown
in (b), where the illustration indicates that points on each path with the same imaginary time index
only interact with each other.

In what follows, we shall neglect the spin statistics of the ions and only consider Boltzmann
statistics. This approximation is well justified in many systems at ordinary temperatures. In
this case, the Born–Oppenheimer path integral form in equation (9.10) can be written as a
discrete path integral:

Q P (N, V , T ) =
[ N∏

I=1

(
MI P

2πβh̄2

)3P/2 ∫
dR

(1)

I · · · dR
(P)

I

]

× exp

{
−β

[ P∑
s=1

( N∑
I=1

1

2
MI ω

2
P

(
R

(s+1)
I − R

(s)
I

)2
+

1

P
E0(R

(s)
1 , . . . ,R

(s)
N )

)]}

(9.11)

where the trace condition, equation (9.3), requires that R
(P+1)
I = R

(1)
I . The true quantum

partition function Q(N, V , T ) = limP→∞ Q P(N, V , T ) by virtue of the Trotter theorem.
Equation (9.11) is isomorphic to, for finite P , a system of N classical ring polymer

chains with P points (see figure 9(a)) coupled through a nearest-neighbour harmonic
interaction and interacting through a potential (1/P)E0(R

(s)
1 , . . . ,R

(s)
N ) = ε0(r

(s)
1 , . . . ,R

(s)
N +

VNN(R
(s)
1 , . . . ,R

(s)
N ). The nature of the interaction is not equivalent to that which would be

expected for a classical system, however, since only points on polymer chains with the same
Trotter index, s, interact (see figure 9(b)). The partition function in equation (9.11) and its
associated equilibrium averages can be evaluated via MD. However, as has been shown by
Hall and Berne [229] and Tuckerman et al [230], a standard MD approach suffers from severe
ergodicity problems. The origin of these problems lies in the presence of the nearest-neighbour
harmonic coupling, the strength of which increases with P , which can be quite large compared
to the E0 interaction which is attenuated by a factor of 1/P . This gives rise to a strong
separation of timescales that causes MD trajectories to sample regions of phase space away
from the invariant tori very slowly. Moreover, the harmonic interaction couples modes with
a wide range of frequencies. The highest of these frequencies dictates the maximum time
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step that can be used and causes the low frequency modes to be sampled inadequately. A
solution to these problems was proposed by Tuckerman et al [230] who introduced a linear
variable transformation from Cartesian coordinates to a set of mode coordinates and suggested
coupling each mode degree of freedom to a Nosé–Hoover chain thermostat [142]. Two types
of transformation were proposed. The first is a ‘staging’ transformation [16, 230] so named
because it is derived from the staging MC algorithm [231] and takes the form

u
(1)
I = R

(1)
I

u
(s)
I = R

(s)
I − R

(s)∗
I s = 2, . . . , P

(9.12)

where

R
(s)∗
I = (s − 1)R

(s+1)
I + R

(1)
I

s
. (9.13)

The inverse of this transformation is given by

R
(1)
I = u

(1)
I

R
(s)
I = u

(1)
I +

P∑
l=s

s − 1

l − 1
u

(l)
I l = 2, . . . , P

(9.14)

which can also be expressed recursively as

R
(1)
I = u

(1)
I

R
(s)
I = u

(s)
I +

s − 1

s
R

(s+1)

I +
1

s
R

(1)

I s = 2, . . . , P
(9.15)

where, because of the condition R
(P+1)
I = R

(1)
I , the s = P term is used to start the recursion.

Substitution of this transformation into equation (9.11) gives

Q P (N, V , T ) =
[ N∏

I=1

(
MI P

2πβh̄2

)3P/2 ∫
du

(1)
I · · · du

(P)
I

]

× exp

{
−β

[ P∑
s=1

( N∑
I=1

1

2
M (s)

I ω2
P

(
u

(s)
I

)2
+

1

P
E0(R

(s)
1 (u), . . . ,R

(s)
N (u))

)]}

(9.16)

where the masses are given by

M (1)
I = 0

M (s)
I = s

s − 1
MI s = 2, . . . , P

(9.17)

and where R
(s)
I (u) indicates that E0 becomes a function of the staging variables via the

transformation. A second possible transformation scheme is based on a simple normal mode
decomposition of the path. Expanding the path in a Fourier series according to

R
(s)
I =

P∑
k=1

a
(k)

I e2π i(s−1)(k−1)/P (9.18)

where a
(k)
I are the expansion coefficients, a transformation may be introduced of the form

u
(1)
I = a

(1)
I

u
(P)

I = a
(P+2)/2
I

u
(2s−2)
I = Re(a(s)

I )

u
(2s−1)
I = Im(a

(s)
I ).

(9.19)
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Substitution of this transformation into equation (9.11) yields an expression similar to
equation (9.16) with the masses given by

M (1)
I = 0

M (s)
I = λs MI s = 2, . . . , P

(9.20)

where

λ(2s−1) = λ(2s−2) = 2P

{
1 − cos

[
2π(s − 1)

P

]}
(9.21)

are the normal mode frequencies.
Given the staging and normal mode transformations, a CP extended Lagrangian can be

written down for AIPIs [16]:

L =
P∑

s=1

{
µ

P

∑
i

〈ψ̇(s)
i |ψ̇(s)

i 〉 +
1

2

N∑
I=1

M̃ (s)
I (u̇

(s)
I )2 − 1

2

N∑
I=1

M (s)
I ω2

P (u
(s)
I )2 − E

[{ψ}(s), {R(u)}]

+
∑
i, j

[
�

(s)
i j (〈ψ(s)

i |ψ(s)
j 〉 − δi j)

]}
. (9.22)

At this point, a few comments are in order. First, note that both orbital velocities, {ψ̇(s)
i },

and mode velocities, {u̇(s)
I } have been introduced. This indicates that both the orbital and

mode dynamics generated by equation (9.22) are fictitious. The former is used to generate the
instantaneous forces and the latter to sample path configurations. Note, further, that the kinetic
masses introduced for the modes, {M̃ (s)

I }, which are given by M̃ (1)
I = M1, M̃ (s)

I = M (s)
I for s =

2, . . . , P , have been chosen so that all staging or normal modes move on the same timescale.
Since one is free to choose any set of kinetic masses for the fictitious dynamics, this particular
choice ensures that slow and fast modes are sampled with equal efficiency. Finally, note that
{ψi }(s) indicates that a complete set of KS orbitals is needed for each imaginary time slice s.
That is, each time slice requires a separate electronic structure calculation. While this certainly
makes the already costly computations P times more expensive, it should be recognized that
these are completely independent calculations that can be handled easily in parallel. As stated
earlier, the equations of motion derived from equation (9.22) need to be coupled to a canonical
dynamics or thermostatting method. In addition, it is absolutely essential that each Cartesian
component of each mode variable be coupled to its own thermostat [16, 230]. Detailed
discussions of the equations of motion and integration algorithms for them can be found in [16].

As a final comment, it is well known that path integral computations are best performed in
some type of mode variable (e.g. staging or normal modes) because, in these variables, paths
are sampled more efficiently. For this reason, in the framework of AIPI, it is preferable to
use MD over MC as a means of sampling path configurations. The reason for this is that, in
MC, generally only a small subset of mode coordinates can be sampled in each trial move,
which, nevertheless, changes the entire path configuration. It is, then, necessary to reminimize
all P sets of KS orbitals in order to recompute the new potential energy. Since the electronic
structure strongly dominates the computational time in AIPI calculations, this will lead to an
efficient approach. By contrast, MD generates, in each step, moves of all the modes on all the
cyclic polymer chains, which leads to an increase in efficiency, particularly when combined
with the fictitious CP dynamics for the electrons.

9.1. Proton transfer in malonaldehyde

As discused in section 1, one of the main advantages of the AIMD technique is that it allows
the study of chemical bond-breaking and forming events, for which reliable empirical potential
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Figure 10. Illustration of the intramolecular proton transfer process in malonaldehyde. The Cs
minimum with the proton on the left is transformed to a C2v transition state and to an equivalent
C2 minimum with the proton localized on the other oxygen.

Table 3. Optimized Cs ground-state structure of malonaldehyde (see figure 10). The notation
70/15/pbc indicates a plane-wave cut-off of 70 Ryd, a box length of 15 Bohr, and periodic
boundary conditions, with similar indications for the other columns (cbc indicates cluster boundary
conditions).

Quantity 70/15/pbc 70/20/pbc 100/15/pbc 100/15/cbc [234] [234] Expt [237]

r(O−H) 1.01 1.01 1.00 1.00 0.994 0.956 0.969
r(O· · ·H) 1.73 1.72 1.73 1.73 1.694 1.908 1.68
r(O· · ·O) 2.64 2.62 2.62 2.62 2.589 2.703 2.553
r(O−C) 1.34 1.34 1.34 1.34 1.328 1.326 1.320
r(O=C) 1.26 1.26 1.26 1.25 1.248 1.217 1.234
r(C=C) 1.37 1.37 1.37 1.37 1.362 1.353 1.348
r(C−C) 1.44 1.44 1.44 1.44 1.439 1.459 1.454
r(C−H1) 1.08 1.08 1.08 1.08 1.083 1.071 1.089
r(C−H2) 1.08 1.08 1.08 1.08 1.077 1.068 1.091
r(C−H3) 1.10 1.10 1.10 1.10 1.098 1.088 1.094
 (O−H· · ·O) 147.4 147.4 147.0 146.4 — 139.0 147.6
 (O−C=C) 123.9 124.0 123.8 123.9 124.5 126.1 124.5
 (C=C−C) 120.8 120.4 120.4 120.5 119.5 121.3 119.4
 (C−C=O) 124.0 123.7 123.8 123.5 123.5 123.8 123.0
 (H−C=C) 122.9 122.8 123.0 123.0 122.5 121.4 122.3
 (C=C−H) 119.7 119.6 119.8 119.7 120.0 119.4 128.1
 (C−C−H) 117.1 117.4 117.2 117.4 117.6 116.7 117.6

models generally do not exist. As an illustration of the AIMD and AIPI methods, we investigate
the role of nuclear quantum effects on a very common chemical reaction, the proton transfer
reaction. Here, a simple example, proton transfer through the internal hydrogen bond in
malonaldehyde (C3H4O2), is explored [232]. The process is illustrated in figure 10. As the
figure makes clear, the transfer of the proton between the two oxygens gives rise to a change
in the chemical bonding pattern around the ring. At zero temperature, the barrier to proton
transfer, as computed by high level ab initio calculations, ranges from 3.1 to 4.6 kcal mol−1.

Our AIMD and AIPI simulations are based on the use of the Becke GGA exchange [103]
and Perdew–Zunger [233] correlation functionals. The malonaldehydemolecule was placed in
an 8.0 Å periodic box, and a plane-wave cut-off of 70 Ryd was employed. Core electrons were
treated using the Troullier–Martins pseudopotentials [118]. This level of electronic structure
theory gives a good description of the geometry of the molecule both in the Cs minimum
and C2v transition state configurations compared to quantum chemical calculations [234–236]
and to experiment [237] as tables 3 and 4 make clear. The tables also show that raising the
cut-off to 100 Ryd has little effect on the geometry. Moreover, the present DFT scheme
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Table 4. Optimized C2v transition-state structure of malonaldehyde (see figure 10). The notation
is the same as in table 3.

Quantity 70/15/pbc 100/15/pbc 100/15/cbc [235] [235]

r(O· · ·H) 1.20 1.20 1.21 1.197 1.203
r(O· · ·O) 2.36 2.36 2.36 2.355 2.361
r(O−C) 1.30 1.30 1.30 1.277 1.285
r(C−C) 1.40 1.40 1.41 1.400 1.396
r(C−H) 1.09 1.09 1.10 — —
 (O· · ·H· · ·O) 158.0 157.8 157.5 — —
 (O−C−C) 121.3 121.0 120.9 — —
 (C−C−C) 116.4 116.5 116.4 — —

gives a zero-temperature proton transfer barrier of 3.5 kcal mol−1, in good agreement with
both experimental estimates [238] and quantum chemical calculations [234–236]. A similar
calculation at 100 Ryd gives nearly the same barrier.

The aim of the study is to evaluate the importance of nuclear quantum effects on the
proton transfer free energy profile at 300 K using different levels of approximation to the
nuclear motion. For path integral calculations, a discretization of P = 16 imaginary time
slices was employed. In this study, three different types of calculation were performed:

(1) all nuclei treated as classical point particles;

(2) all nuclei treated as quantum particles;

(3) quantization of only the transferring proton (called classical skeleton calculations).

In each case, thermodynamic integration in conjunction with the bluemoon ensemble
approach [239, 240] is used to obtain the proton transfer free energy profile at 300 K.

Figure 11 shows the free energy profiles thus obtained for each of the three simulation
types. The reaction coordinate on the x-axis is the asymmetric stretch δ = dO1H −dO2H, i.e. the
difference between the distances of each oxygen to the shared proton. In the quantum profiles,
the centroid of the reaction coordinate, δ(c) = (1/P)

∑P
i=1 δi , is used. One of the striking

features of these profiles is that quantum tunnelling of the proton is seen to be important
even at 300 K. The profiles also show that inclusion of only thermal fluctuations, via the
classical nucleus simulation, gives rise to very little difference between the free energy and zero-
temperature barriers. When the transferring proton only is quantized, the barrier is considerably
lower (approximately 2.1 kcal mol−1). Finally, when all nuclei are properly quantized, the
barrier is further lowered to approximately 1.6 kcal mol−1. This implies that there is a nontrivial
quantum effect due to the heavy-atom skeleton. Failure to include this quantum effect leads
to an overestimation of the free energy barrier of 31%. (and, hence, underestimation of the
proton transfer rate (in transition state theory) by a factor of roughly two. Other recent AIPI
calculations of the free energy profile [241–243] suggest that there could be some sensitivity to
the choice of exchange–correlation functional. We note, moreover, that our classical skeleton
approximation is a comparatively mild one in comparison to approximations that are commonly
made in the modelling of such processes. The latter usually completely disregard the structure
of the heavy-atom skeleton or attempt to reduce the dimensionality of the problem to a few
relevant degrees of freedom. Therefore, the classical skeleton approximation most likely leads
to a lower bound estimate of the amount by which more severe approximations would tend to
overestimate the free energy barrier and underestimate the rate.



Topical Review R1341

– 1.0 – 0.5 0.0 0.5 1.0
δ(c)

 (A)

– 1.0

0.0

1.0

2.0

3.0

4.0

∆F
 (

kc
al

/m
ol

)

Classical

Full Quantum

Classical skeleton

Figure 11. Free energy profiles for intramolecular proton transfer in malonaldehyde at 300 K. The
fully classical profile is shown with the dashed curve, the fully quantum profile is shown in the
solid curve and the profile in which only the transferring proton is quantized is shown with the long
dashed curve.

9.2. Proton transport in water

Aqueous proton transport is a fundamentally important process in the chemistry of acids and
bases and in many biologically important systems. In water, protonic defects (hydronium,
H3O+, and hydroxide, OH−, ions) have an anomalously high mobility that cannot be explained
by an ordinary hydrodynamic diffusion picture. In fact, the commonly accepted mobility
mechanism is the so-called ‘structural diffusion’ or ‘Grotthuss’ mechanism, in which solvation
structures diffuse through the hydrogen-bond network via sequential proton transfer reactions.
However, the microscopic details of the Grotthuss mechanism for different situations, were,
until recently, largely unelucidated. Here, we describe AIMD and AIPI simulations [44–
46, 48, 244] that have led to a clear picture of the structural diffusion mechanism of the
hydronium ion in water, a picture that has since been shown to be consistent with all available
experimental data [245]. In addition, one of the key controversial issues, concerning the
dominant solvation structures, is resolved. Briefly, one school of thought, put forth by
Eigen [246], considers the dominant solvation structure to be that of a H3O+ core surrounded
by three water molecules consisting of a H9O+

4 cation. The other school of thought, due to
Zundel [247], favours a picture in which the dominant structure consists of a protonated water
dimer or H5O+

2 cation, in which the proton is equally shared between two water molecules.
The simulation protocol consists of 31 water molecules and one hydronium ion in a

10 Å periodic box. Exchange and correlation are, again, treated using the BLYP functional,
and a plane-wave basis set truncated at a cut-off of 70 Ryd was employed. Core electrons
were treated using the Troullier–Martins pseudopotentials. For path integral simulations, a
discretization of eight imaginary time slices was employed. AIMD and AIPI trajectories of
length 20 ps using a time step of 0.17 fs were generated.

Figure 12 shows schematically the structural diffusion mechanism that is uncovered in
these simulations. Similar ‘cartoons’ of the proton transfer process can also be found in recent
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articles by Agmon [245, 248] (see, for example, figure 1 in [248]) as well as by Tuckerman
et al [44, 48]. As the figure shows, the process involves the breaking of a hydrogen bond
between the first and second solvation shell members of H3O+, i.e., a second solvation shell
fluctuation [16, 249]. Following this hydrogen-bond breaking event, a first solvation shell
water is left in a state in which its coordination is three instead of the usual average value of
four for water. In this state, it is coordinated like hydronium rather than like water, and it is,
therefore, ‘prepared’ to become a properly solvated hydronium via proton transfer. When its
coordination number changes, the oxygen–oxygen distance between the hydronium and the
undercoordinated water shrinks by approximately 0.1 Å, and the proton moves to the middle of
the bond, forming an intermediate H5O+

2 cation state. The proton can then either return to the
original hydronium or continue to cross the hydrogen bond to the new oxygen site. If the latter
occurs, then there is a new H9O+

4 cation formed with a new hydronium core. Thus, the solvation
structure has migrated through the hydrogen bond network via the proton transfer step. There
may also be several hops before resolvation of the undercoordinated first solvation shell water
occurs [44]. The rate-limiting process is the hydrogen bond-breaking event, which requires
approximately 1.5 ps to occur. This number is in good agreement with the experimentally
determined rate of structural diffusion from NMR measurements [250]. In addition, the
activation enthalpy, approximately 3 kcal mol−1, can be explained by this mechanism, which
requires approximately 2.5 kcal mol−1 to break the hydrogen bond and another 0.5 kcal mol−1

to shrink the oxygen–oxygen distance after the hydrogen bond is broken [251].
Inclusion of nuclear quantum effects via the path integral can resolve the controversy of the

solvation structures [46, 47]. In particular, if we plot the probability distribution of the oxygen–
oxygen distance, ROO, and the proton transfer coordinate, δ, for the hydrogen bond in which
proton transfer is ‘most likely to occur’ (defined as the hydrogen bond with the smallest value
of δ, equivalent to the ‘special bond’ in [44, 45]), which is shown in the top panel of figure 13,
we see that the probability that the solvation complex is H9O+

4 or H5O+
2 or any complex in

between these two ideal, limiting structures is approximately the same. This is also confirmed
by studying the free energy profile along the coordinate δ also shown in figure 13 (bottom
panel). The fact that there is a broad flat minimum in this free energy confirms the notion
that there is no single dominant solvation structure. Rather, the defect is best described as a
‘fluxional’ defect, that can take on, with the same probability, the characteristics of the H9O+

4
or H5O+

2 cations and all structures in between these. Interestingly, a purely classical treatment
predicts that the H9O+

4 is considerably more stable than the H5O+
2 cation by approximately

0.6 kcal mol−1. This proton transfer barrier is completely washed out by nuclear zero-point
motion, leading to the fluxional defect picture proposed in [46, 47].

9.3. Hydroxide transport in water

Like the hydronium ion, the hydroxide ion is known to have an anomalously high mobility in
water. For at least a century, it has been thought that the hydroxide ion can be viewed as a
water molecule with a missing proton (or a ‘proton hole’) and, therefore, that the mechanism
of hydroxide transport could be deduced from the hydronium transport mechanism as a kind
of ‘mirror image’ in which all of the hydrogen bond polarities are reversed [252]. In this
proton hole picture, the analogue of the Eigen cation would be an anionic complex in which
the hydroxide is coordinated by three water molecules (one for each lone pair on the oxygen),
i.e. an H7O−

4 structure, while the analogue of the Zundel cation would be an anionic complex in
which the excess proton is equally shared between two OH− moieties, i.e. an H3O−

2 structure. In
this picture, the H3O−

2 structure is the most stable complex, which offers a possible explanation
for the lack of a pronounced peak at the hydroxide OH stretch frequency in the IR spectrum
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Figure 12. Illustration of the Grotthuss proton transfer mechanism in acidic solution. Panel 1
shows the hydronium with its first and second solvation shells taken directly from the simulation
study of [44, 45]. Oxygens are shown as red spheres, hydrogens as grey spheres and hydrogen
bonds are shown as green lines. The yellow oxygen is the centre of the hydronium. Panel 2 shows
the breaking of a hydrogen bond between first and second solvation shell members, leaving a first
solvation shell water undercoordinated. This event is followed by the migration of the proton to
the centre of the hydrogen bond, forming an intermediate Zundel cation complex. Panel 3 shows
the proton transfer to the undercoordinated first solvation shell water, illustrating the process of
structural diffusion.

of concentrated KOH and NaOH solutions [186]: the symmetry of the H3O−
2 complex is such

that the two OH moieties point in opposite directions, hence, the changes in their respective
dipole moments upon excitation tend to cancel out [253].
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Figure 13. Top: the quantum mechanical two-dimensional probability distribution function
P(ROO, δ) for an excess proton in water at 300 K. Bottom: free energy profiles along the reaction
coordinate, δ. The curve with filled circles shows the fully quantum free energy profile, while
the curve with hollow squares shows the profile obtained if all nuclei are treated classically. The
dashed line is the thermal energy kT in kcal mol−1.

However, the high coordination number of the hydroxide ion in solution as revealed
in figure 7 and as estimated in numerous experimental studies (see [187] and references
therein) has called into question the validity of the proton hole picture. Here, we employ
AIPI simulations of a hydroxide ion in a bath of 32 water molecules to identify the dominant
solvation complexes of the hydroxide ion in water and to propose a new transport mechanism.
AIPI simulations using the same protocol as that used for the hydronium in water were carried
out generating trajectories of length approximately 30 ps. In order to identify the dominant
solvation complexes, we examine the O*O and O*H RDFs, where O* denotes the hydroxide
oxygen, in two regions of the proton transfer coordinate, δ, in particular, δ < 0.1 Å and
δ > 0.5 Å. Again, δ denotes the smallest asymmetric stretch coordinate over all hydrogen
bonds in the system. The RDFs are shown in figure 14, together with the integrated coordination
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numbers. The figure clearly shows that for δ > 0.5 Å the O*O and O*H coordination
numbers of the hydroxide oxygen are four and five, respectively. These numbers indicate
a fourfold coordinated (H9O−

5 ) complex, in which the hydroxide ion accepts four hydrogen
bonds from neighbouring waters. (The additional hydrogen in the O*H coordination number
is the hydroxide ion’s own covalently bonded hydrogen.) At δ < 0.1 Å, the coordination
numbers are reduced by one, indicating that as the proton is transferred, the dominant solvation
complex is a threefold coordinated (H7O−

4 ) complex, in which the H9O−
5 complex loses a first

solvation shell hydrogen bond, leaving the hydroxide oxygen accepting just three hydrogen
bonds. Importantly, however, there is a second element that appears in the first solvation shell
for δ < 0.1 Å. This can be gleaned by plotting the H′O RDF, where H′ is the hydroxide
hydrogen. This is plotted in figure 14 as a function of δ and shows that as δ → 0, a definite
peak at r = 2.0 Å emerges, indicating that a weak hydrogen bond between the hydroxide
hydrogen and a nearby water is formed. The role of this hydrogen bond in the proton-transfer
process is clear: before the hydroxide ion can accept the proton from a first solvation shell
water, it must be coordinated like a water molecule. In the H7O−

4 complex state, it accepts
three hydrogen bonds. The role of the H′O hydrogen bond is to provide a fourth member of the
solvation shell to which the hydroxide ion donates a hydrogen bond. After completion of the
proton transfer process, the newly formed water molecule will then accept two hydrogen bonds
and donate two, which is the correct coordination structure for a water molecule. Given these
results, the complete proposed transport mechanism is illustrated in figure 15. The isosurface
in the figure is the so-called electron localization function (ELF) [254], which indicates regions
of high spatial probability for finding electrons. The ELF shows that the three lone pairs on
the hydroxide ion tend to be highly delocalized, forming a continuous ring perpendicular to
the O*H′ bond axis. The lack of any distinct attractive basins in the ELF help to explain why
the hydroxide ion can have such a high coordination number in water.

A study of the free energy profile along the reaction coordinate, δ (not shown), indicates
that, in the present case, a small barrier of approximately 0.3 kcal mol−1 is obtained. When
this is combined with a cost of approximately 1.2 kcal mol−1 to convert the H9O−

5 complex to
the H7O−

4 complex [255] and approximately 1.5 kcal mol−1 to relax the H7O−
4 structure [251]

after a first solvation shell hydrogen bond breaking, a total activation enthalpy of roughly
3 kcal mol−1 is obtained which agrees well with the experimental value [253]. This value also
indicates that the H3O−

2 complex is not the most stable complex in solution but emerges in the
present picture as a clear low-barrier transition state, which is in contrast to the proton hole
mechanism, in which H3O−

2 is assumed to be the most stable complex in solution.
Finally, it is worth noting that high coordination numbers for anionic defects in other

hydrogen-bonded liquids have been obtained using AIMD simulations. Recently, Liu and
Tuckerman [33] studied the solvation structure of the amide ion in ammonia using the BLYP
functional [103, 104] and a plane-wave basis set with a cut-off of 70 Ryd. It was found that
the solvation shell has a similar planar structure to OH− in water with a total coordination
number of approximately 7.5, of which roughly 40% is due to hydrogen-bonding. Moreover,
the solvation shell is highly dynamic like that of OH− in water and in contrast to H3O+ in
water or NH+

4 in ammonia [33]. It is expected that through studies of other hydrogen-bonded
liquids, reproducible patterns such as these may emerge.

10. Beyond the ground state

Extending the AIMD technique beyond the ground state is a challenging problem. While it
is straightforward to treat excited states in wavefunction based methods such as Hartree–Fock
theory, DFT based approaches have not yet become routine, although there are many promising
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Figure 14. RDFs, g(r), and running coordination numbers, N , with respect to the hydroxide ion
and a first solvation shell water at different stages in the proton transfer process. (a) RDFs, gO∗O
(solid curve) and gO∗H (long dashed curve), and coordination numbers, NO∗O and NO∗H (dashed
curves), with respect to the OH−, O*, for values of the proton transfer coordinate, |δ| > 0.5 Å.
(b) The same as (a) except for |δ| < 0.1 Å. (c) Two-dimensional generalization of a hydrogen–
oxygen RDF gH′O(r, δ) with respect to the OH− hydrogen, H′, as a function of r and δ. (d) RDFs
and coordination numbers with respect to Ō for |δ| < 0.1 Å. Here, Ō belongs to the first solvation
shell water that transfers its proton to the hydroxide. The line scheme is the same as in (a) and (b).
The filled circles are the coordination numbers from (b).

developments along these lines, and it is likely that such methods will soon become a stan-
dard feature of state-of-the-art packages (see section 12). Electronic excitations are clearly
important in systems with many closely spaced electronic levels such as metals with collective
excitations and systems at temperatures higher than the Fermi temperature. They are also im-
portant in many classes of reactions where transitions to a single excited state surface can occur.

The case of many closely spaced electronic levels can be treated by assuming a thermal
population of electronic levels and treating the problem within a free energy formulation [256].
In a noninteracting electron theory, described by a single-particle Hamiltonian of the form

h = − 1
2 ∇2 + V (r,R) (10.1)

such a formulation is achieved within the grand canonical ensemble (GCE). In the GCE,
the temperature, T , volume, V , and chemical potential, µ, are the thermodynamic control
variables, and the partition function, including the Pauli exclusion principle, is given by

Q(µ, V , T ) =
{∏

i

[1 + exp(−β(εi − µ)]

}2

(10.2)

where εi are the single-particle energy eigenvalues, β = 1/kT and the power of two is due to
the spin multiplicity. The free energy in the GCE is, then, given by

F(µ, V , T ) = −PV = −kT ln Q(µ, V , T ) = −2kT
∑

i

ln{1 + [exp(−β(εi − µ)]} (10.3)
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(c) (d)
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Figure 15. Representative configurations showing the proton transfer mechanism. Each panel
shows quantum mechanical particle density snapshots of the OH− together with relevant first and
second solvation shell water molecules. Oxygen and hydrogen atoms are shown as red and grey
spheres, respectively. The defect oxygen, O*, and shared proton in the most active H-bond are
shaded yellow and black, respectively. H-bonds are schematically shown as green lines. In blue are
shown the η = 0.93 isosurfaces of the ELF [254] of the path centroid configuration for the OH−
and only those water molecules which are H-bonded to the OH−. (a) The OH− is in its inactive
H9O−

5 structure with fourfold planar coordination around O*. The ELF shows that the three lone
pairs around O* are in a delocalized ring structure, thus supporting the hypercoordination of the
OH− (see text). An additional water molecule, which participates in the activation process ((c),
(d)), appears in the upper right corner. (b) A first solvation shell H-bond breaking event occurs
which transforms the H9O−

5 structure into an approximately tetrahedral H7O−
4 structure. (c) A

weak H-bond between the OH− hydrogen, H′, and the bulk water molecule from panels (a) and (b)
is formed. As shown, when this H-bond forms, one of the shared protons between O* and a
coordinating water begins to transfer. (d) As the proton is transferred, the environments around
each OH moiety become similar (see, also, figure 14(d)). (Note that a complete solvation shell for
the water that transfers its proton to O* is not shown. However, the coordination number around
this water is, nevertheless, 4.0—see figure 14(d)). The ELF shows two distorted rings around the
yellow oxygens, emphasizing the symmetry of this configuration. (e) After the proton transfer, the
original OH− has been transformed into a properly solvated water molecule with two lone pairs,
whereas the newly formed OH− (now shown in yellow) possesses the ring-shaped ELF. (f) The
process is completed by the acceptance of a fourth H-bond from the newly formed O*, which
‘closes the gate’ by forming a new, inactive H9O−

5 complex with a fully intact ELF ring as in
panel (a).
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where P is the pressure. In the GCE, the average particle number is given by

N = −
(

∂F
∂µ

)
V,T

. (10.4)

Therefore, it is possible to perform a Legendre transform from the GCE to the canonical
ensemble, where N is fixed, and obtain the Helmholtz free energy by

A(N, V , T ) = F(µ(N), V , T ) + µ(N)N (10.5)

where µ(N) is obtained by equation (10.4) for µ as a function of N . In this way, the total
number of electrons can be fixed.

Since KS theory is a theory for noninteracting electrons in an effective potential,
VKS(r,R), the free energy formulation can be generalized to include electron interactions
via the KS formalism. At finite temperature, the KS Hamiltonian is given by

HKS = −1

2
∇2 + Vext(r,R) + VH(r) +

δAxc

δn(r)
+ U(R) (10.6)

where Axc[n] is the finite temperature exchange–correlation functional and VH(r) =∫
dr′ n(r′)/|r − r′|. However, caution is needed because the sum of the KS eigenvalues does

not yield the total energy of the system [95, 96]. It can be shown that the correct formulation
of the Helmholtz free energy functional is

A(N, V , T ) = F(µ(N), V , T ) + µ(N)

∫
dr n(r) + U(R) − 1

2

∫
dr VH(r)n(r)

+ Axc[n] −
∫

dr
δAxc[n]

δn(r)
n(r) (10.7)

where the density is computed from

n(r) =
∑

i

fi (T )|ψi (r)|2

fi (T ) = fi (0)

1 + exp[−β(εKS
i − µ(N))]

.
(10.8)

Here εKS
i are the KS eigenvalues and fi (T ) are the usual Fermi–Dirac occupation numbers in

the GCE. This free energy functional can, then, be used in an AIMD simulation with forces
derived from FI = −∇I A(N, V , T ). Note that the free energy formulation reduces to the
correct ground-state KS formulation when T → 0. It is important to point out, however, that
the self-consistent density corresponding to the exact free energy functional of Mermin [257]
is not an extremum of equation (10.7) but rather a saddle point. Therefore, AIMD simulations
cannot be easily performed using an extended Lagrangian based approach but can employ a
direct diagonalization approach as a viable alternative.

The case of electronic transitions to a single excited state surface can, in principle, be
treated using non-adiabatic self-consistent formulations [258, 259] based on time-dependent
density functional theory (TDDFT) [260, 261]. The latter has been used within a linear-
response formalism to compute vertical excitation spectra with some degree of success [262].
The computational overhead of such an approach is rather formidable, however, so that only
small systems have been treated with this approach thus far [259]. However, it is possible to
develop approximate analytical expressions for excited singlet states by introducing, for these
surfaces, approximate excited state exchange–correlation functionals [263] and combining the
approach with a surface-hopping algorithm [264, 265]. An appropriate CP type scheme for
this approach was recently introduced by Doltsinis and Marx [266] and was applied to the
cis–trans photoisomerization of the Schiff base, formaldimine.
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11. Linear scaling methods

In order to complete our survey of the AIMD methodology, a few words on the subject of linear
scaling methods is in order. A more detailed review of this subject can be found in the recent
article by Bowler et al [267]. One of the most severe limitations to the size of system that can
be treated by DFT based AIMD methods is the fact that KS DFT scales as N2 M where N is the
number of electronic states and M is the number of basis functions used to represent the KS
orbitals. The reason for this can be understood by considering the computation of the overlap
matrix 〈ψi |ψ j 〉, which requires N(N + 1)/2 scalar products each of length M . However,
physics and chemistry both tell us that the properties of matter are local. Thus, we do not
expect the electron distribution in a covalent bond of an adsorbate on a surface to be strongly
influenced by distant atoms in the bulk. If the orbitals are truly local, then we would expect
that a formulation of DFT that scales linearly with the number of atoms should be possible.

Perhaps the most natural approach is to use DFT in its original Hohenberg–Kohn
formulation, which involves only the density [102]. Such an approach [268] manifestly scales
linearly with the number of basis functions used to expand the density. The main difficulty
with this approach is that the kinetic energy functional becomes an additional unknown that
needs to be approximated [268–271]. Moreover, the option to use nonlocal pseudopotentials
in place of core electrons is no longer available [272]. For this reason, such ‘density only’ or
‘orbital free’ methods have largely been limited in their scope of applications.

First, if the orbitals are well localized, then expanding them in a localized basis set such
as a Gaussian [100], DVR [101] or wavelet [273] basis sets means that the overlap matrix
〈ψi |ψ j〉 only scales as N2 since not all of the basis functions will be needed for each orbital.
Moreover, for localized orbitals, overlaps between orbitals in distant parts of a large system
will be zero so the overlap matrix should be relatively sparse. This means that the number of
nonzero elements will not increase as the system size increases so that the calculation of the
matrix really scales linearly with the size of the system. A more quantitative statement of this
fact can be achieved via the one-particle density matrix given by

ρ(r, r′) =
∑

i

fiψi (r)ψ∗
i (r′) (11.1)

where ρ(r, r) = n(r). The physical behaviour of the density matrix is such that as
|r − r′| → ∞, ρ(r, r′) tends to zero exponentially for insulators and algebraically for
metals. Therefore, linear scaling can be achieved by introducing the approximation that
ρ(r, r′) = 0 for |r − r′| > rcut for some cut-off radius, rcut. This condition enforces locality
up to a distance rcut and, therefore, leads to linear scaling [274]. Based on these physical
considerations, various novel schemes have been introduced employing orbitals [275, 276]
or density matrix [274] formulations that achieve linear scaling and have been used in tight-
binding MD calculations [276]. Recently, a CP scheme for density-matrix propagation that
purports to scaling linearly was introduced [277]. For orbital formulations, the challenge in
CP evolution is that the fictitious dynamics causes the orbitals to mix as the system evolves
so that initially well localized orbitals tend to become rapidly delocalized. Thus, in order to
achieve linear scaling within an orbital based CP approach using DFT with KS orbitals, it is
necessary to introduce a device by which the orbitals could be forced to remain maximally
localized as the system evolves. Here, quantum field theoretic approaches might be of utility.

12. Available software packages

Applications of the type presented here would not be possible without powerful software
packages containing efficient parallel implementations of the AIMD technology. Some of
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the simulations described herein were performed with the PINY MD package developed by
the present author and his collaborators [278]. [278] not only contains a description of the
capabilities of the PINY MD package (which includes both AIMD and force field modules
with a path integral option) but it also gives a description of parallelization algorithms.
PINY MD is available as open-source code under the Common Public License and can be
obtained from homepages.nyu.edu/~mt33/PINY MD/PINY.html. Other simulations were
carried out with the CPMD package [279], which is also freely available from www.cpmd.org.
We note that other powerful codes are available, including CASTEP (Molecular Simulations,
Inc., www.tcm.phy.cam.ac.uk/casstep), CP-PAW (P E Blöchl, Clausthal University of
Technology, www.pt.tu-clausthal.de/~paw/index.html), NWChem (Pacific Northwest
National Laboratory, www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html), ABINIT
(X Gonze et al, www.abinit.org), VASP (cms.mpi.univie.ac.at/vasp/) and CAMPOS
(www.fysik.dtu.dk/CAMPOS). The reader may also wish to make note of a new Web site
(www.fsatom.org)established specifically for the purpose of addressing free software issues,
such as standardization of input/output and interfacing and providing links to other open-source
initiatives in the molecular modelling field.

13. Conclusion

A broad survey of the state of the art in AIMD, the marriage of finite temperature MD with
‘on the fly’ electronic structure calculations, has been presented. Our discussion began with
a derivation of the approach starting from the Born–Oppenheimer approximation. Following
this, representations of electronic structure were considered and basis set expansions were
discussed. The extended Lagrangian or CP algorithm for performing AIMD was presented
in detail and issues of adiabaticity control were considered. In addition, the calculation
of observables and, in particular, observables that depend on knowledge of the electronic
structure were discussed. It was also shown how nuclear quantum effects can be included via
the Feynman path integral and the AIPI approach. A number of example applications were
presented in order to demonstrate the power of the approach. Finally, issues related to excited
states and scaling of the method with system size were discussed. A brief list of available
packages for AIMD was also presented.

The basic goal of this survey was to give the reader a basic description of the current
capabilities and limitations of AIMD and to give the reader a broad literature in which to look
for more details. It is our hope that the present discussion will serve the non-expert as a means
of entering or becoming familiar with this rapidly growing and evolving field.
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